Mercurial > repos > public > sbplib
view +multiblock/DefCurvilinear.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | e7a6744499fa |
children | 8aa0909125a4 7df63b17e078 |
line wrap: on
line source
classdef DefCurvilinear < multiblock.Definition properties nBlocks blockMaps % Maps from logical blocks to physical blocks build from transfinite interpolation blockNames connections % Cell array specifying connections between blocks boundaryGroups % Structure of boundaryGroups end methods % Defines a multiblock setup for transfinite interpolation blocks % TODO: How to bring in plotting of points? function obj = DefCurvilinear(blockMaps, connections, boundaryGroups, blockNames) default_arg('boundaryGroups', struct()); default_arg('blockNames',{}); nBlocks = length(blockMaps); obj.nBlocks = nBlocks; obj.blockMaps = blockMaps; assert(all(size(connections) == [nBlocks, nBlocks])); obj.connections = connections; if isempty(blockNames) obj.blockNames = cell(1, nBlocks); for i = 1:length(blockMaps) obj.blockNames{i} = sprintf('%d', i); end else assert(length(blockNames) == nBlocks); obj.blockNames = blockNames; end obj.boundaryGroups = boundaryGroups; end function g = getGrid(obj, varargin) ms = obj.getGridSizes(varargin{:}); grids = cell(1, obj.nBlocks); for i = 1:obj.nBlocks grids{i} = grid.equidistantCurvilinear(obj.blockMaps{i}.S, ms{i}); end g = multiblock.Grid(grids, obj.connections, obj.boundaryGroups); end function h = show(obj, label, gridLines, varargin) default_arg('label', 'name') default_arg('gridLines', false); h = []; if isempty('label') && ~gridLines for i = 1:obj.nBlocks h = [h, obj.blockMaps{i}.show(2,2)]; end axis equal return end if gridLines ms = obj.getGridSizes(varargin{:}); for i = 1:obj.nBlocks h = [h, obj.blockMaps{i}.show(ms{i}(1),ms{i}(2))]; end end switch label case 'name' labels = obj.blockNames; case 'id' labels = {}; for i = 1:obj.nBlocks labels{i} = num2str(i); end case 'none' axis equal return end for i = 1:obj.nBlocks parametrization.Ti.label(obj.blockMaps{i}, labels{i}); end axis equal end end methods (Abstract) % Returns the grid size of each block in a cell array % The input parameters are determined by the subclass ms = getGridSizes(obj, varargin) % end end end