view +multiblock/+domain/Circle.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 9be370486d36
children
line wrap: on
line source

classdef Circle < multiblock.DefCurvilinear
    properties
        r, c

        hs
        r_arc
        omega
    end

    methods
        function obj = Circle(r, c, hs)
            default_arg('r', 1);
            default_arg('c', [0; 0]);
            default_arg('hs', 0.435);


            % alpha = 0.75;
            % hs = alpha*r/sqrt(2);

            % Square should not be a square, it should be an arc. The arc radius
            % is chosen so that the three angles of the meshes are all equal.
            % This gives that the (half)arc opening angle of should be omega = pi/12
            omega = pi/12;
            r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); %  = hs* 1/sin(omega)
            c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0];

            cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]);

            c2 = cir(0);
            c3 = cir(1);

            s1 = [-hs; -hs];
            s2 = [ hs; -hs];
            s3 = [ hs;  hs];
            s4 = [-hs;  hs];

            sp2 = parametrization.Curve.line(s2,c2);
            sp3 = parametrization.Curve.line(s3,c3);

            Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]);
            Se2 = Se1.rotate(c,pi/2);
            Se3 = Se2.rotate(c,pi/2);
            Se4 = Se3.rotate(c,pi/2);


            S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1);

            A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse);
            B = A.rotate(c,1*pi/2).rotate_edges(-1);
            C = A.rotate(c,2*pi/2).rotate_edges(-1);
            D = A.rotate(c,3*pi/2).rotate_edges(0);

            blocks = {S,A,B,C,D};
            blocksNames = {'S','A','B','C','D'};

            conn = cell(5,5);
            conn{1,2} = {'e','w'};
            conn{1,3} = {'n','s'};
            conn{1,4} = {'w','s'};
            conn{1,5} = {'s','w'};

            conn{2,3} = {'n','e'};
            conn{3,4} = {'w','e'};
            conn{4,5} = {'w','s'};
            conn{5,2} = {'n','s'};

            boundaryGroups = struct();
            boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}});
            boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}});
            boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}});
            boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}});
            boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}});

            obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames);

            obj.r     = r;
            obj.c     = c;
            obj.hs    = hs;
            obj.r_arc = r_arc;
            obj.omega = omega;
        end

        function ms = getGridSizes(obj, m)
            m_S = m;

            % m_Radial
            s = 2*obj.hs;
            innerArc = obj.r_arc*obj.omega;
            outerArc = obj.r*pi/2;
            shortSpoke = obj.r-s/sqrt(2);
            x = (1/(2-sqrt(3))-1)*obj.hs;
            longSpoke =  (obj.r+x)-obj.r_arc;
            m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2);

            ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]};
        end
    end
end