Mercurial > repos > public > sbplib
view +multiblock/+domain/Circle.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 9be370486d36 |
children |
line wrap: on
line source
classdef Circle < multiblock.DefCurvilinear properties r, c hs r_arc omega end methods function obj = Circle(r, c, hs) default_arg('r', 1); default_arg('c', [0; 0]); default_arg('hs', 0.435); % alpha = 0.75; % hs = alpha*r/sqrt(2); % Square should not be a square, it should be an arc. The arc radius % is chosen so that the three angles of the meshes are all equal. % This gives that the (half)arc opening angle of should be omega = pi/12 omega = pi/12; r_arc = hs*(2*sqrt(2))/(sqrt(3)-1); % = hs* 1/sin(omega) c_arc = c - [(1/(2-sqrt(3))-1)*hs; 0]; cir = parametrization.Curve.circle(c,r,[-pi/4 pi/4]); c2 = cir(0); c3 = cir(1); s1 = [-hs; -hs]; s2 = [ hs; -hs]; s3 = [ hs; hs]; s4 = [-hs; hs]; sp2 = parametrization.Curve.line(s2,c2); sp3 = parametrization.Curve.line(s3,c3); Se1 = parametrization.Curve.circle(c_arc,r_arc,[-omega, omega]); Se2 = Se1.rotate(c,pi/2); Se3 = Se2.rotate(c,pi/2); Se4 = Se3.rotate(c,pi/2); S = parametrization.Ti(Se1,Se2,Se3,Se4).rotate_edges(-1); A = parametrization.Ti(sp2, cir, sp3.reverse, Se1.reverse); B = A.rotate(c,1*pi/2).rotate_edges(-1); C = A.rotate(c,2*pi/2).rotate_edges(-1); D = A.rotate(c,3*pi/2).rotate_edges(0); blocks = {S,A,B,C,D}; blocksNames = {'S','A','B','C','D'}; conn = cell(5,5); conn{1,2} = {'e','w'}; conn{1,3} = {'n','s'}; conn{1,4} = {'w','s'}; conn{1,5} = {'s','w'}; conn{2,3} = {'n','e'}; conn{3,4} = {'w','e'}; conn{4,5} = {'w','s'}; conn{5,2} = {'n','s'}; boundaryGroups = struct(); boundaryGroups.E = multiblock.BoundaryGroup({{2,'e'}}); boundaryGroups.N = multiblock.BoundaryGroup({{3,'n'}}); boundaryGroups.W = multiblock.BoundaryGroup({{4,'n'}}); boundaryGroups.S = multiblock.BoundaryGroup({{5,'e'}}); boundaryGroups.all = multiblock.BoundaryGroup({{2,'e'},{3,'n'},{4,'n'},{5,'e'}}); obj = obj@multiblock.DefCurvilinear(blocks, conn, boundaryGroups, blocksNames); obj.r = r; obj.c = c; obj.hs = hs; obj.r_arc = r_arc; obj.omega = omega; end function ms = getGridSizes(obj, m) m_S = m; % m_Radial s = 2*obj.hs; innerArc = obj.r_arc*obj.omega; outerArc = obj.r*pi/2; shortSpoke = obj.r-s/sqrt(2); x = (1/(2-sqrt(3))-1)*obj.hs; longSpoke = (obj.r+x)-obj.r_arc; m_R = parametrization.equal_step_size((innerArc+outerArc)/2, m_S, (shortSpoke+longSpoke)/2); ms = {[m_S m_S], [m_R m_S], [m_S m_R], [m_S m_R], [m_R m_S]}; end end end