Mercurial > repos > public > sbplib
view +grid/CurvilinearTest.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 7c1d3fc33f90 |
children |
line wrap: on
line source
function tests = CurvilinearTest() tests = functiontests(localfunctions); end function testMappingInputGridFunction(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { [10, 1]; [10*6, 2]; [10*5*7, 3]; }; % How to test this? Just make sure it runs without errors. for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(size(g.coords),out{i}); end end function testMappingInputComponentMatrix(testCase) in = { {{1:3}, [1 2 3]'}, {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,in{i}{2}); end end function testMappingInputCellOfMatrix(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.coords,out{i}); end end function testMappingInputCellOfVectors(testCase) in = { {{1:3}, {[1 2 3]'}}, {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}, }; out = { [1 2 3]', [1 2 3 4 5 6; 7 8 9 10 11 12]', }; end function testMappingInputError(testCase) testCase.verifyFail(); end function testScaling(testCase) in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}}; g = grid.Curvilinear(in{2},in{1}{:}); testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet'); g.logicalGrid.h = [2 1]; testCase.verifyEqual(g.scaling(),[2 1]); end function testGetBoundaryNames(testCase) in = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; out = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for i = 1:length(in) g = grid.Curvilinear(in{i}{2},in{i}{1}{:}); testCase.verifyEqual(g.getBoundaryNames(), out{i}); end end function testGetBoundary(testCase) grids = { {{1:10}, @(x) exp(x)}, {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]}, {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]}, }; boundaries = { {'l', 'r'}, {'w', 'e', 's', 'n'}, {'w', 'e', 's', 'n', 'd', 'u'}, }; for ig = 1:length(grids) g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:}); logicalGrid = grid.Cartesian(grids{ig}{1}{:}); for ib = 1:length(boundaries{ig}) logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib}); x = num2cell(logicalBoundary',2); expectedBoundary = grids{ig}{2}(x{:})'; testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary); end end end