view +grid/CurvilinearTest.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 7c1d3fc33f90
children
line wrap: on
line source

function tests = CurvilinearTest()
    tests = functiontests(localfunctions);
end

function testMappingInputGridFunction(testCase)
    in = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    out = {
        [10, 1];
        [10*6, 2];
        [10*5*7, 3];
    };


    % How to test this? Just make sure it runs without errors.

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(size(g.coords),out{i});
    end
end

function testMappingInputComponentMatrix(testCase)
    in = {
        {{1:3}, [1 2 3]'},
        {{1:2, 1:3}, [1 2 3 4 5 6; 7 8 9 10 11 12]'},
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.coords,in{i}{2});
    end
end

function testMappingInputCellOfMatrix(testCase)

    in = {
        {{1:3}, {[1 2 3]'}},
        {{1:2, 1:3}, {[1 2 3; 4 5 6], [7 8 9; 10 11 12]}},
    };

    out = {
        [1 2 3]',
        [1 2 3 4 5 6; 7 8 9 10 11 12]',
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.coords,out{i});
    end
end

function testMappingInputCellOfVectors(testCase)
    in = {
        {{1:3}, {[1 2 3]'}},
        {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}},
    };

    out = {
        [1 2 3]',
        [1 2 3 4 5 6; 7 8 9 10 11 12]',
    };
end

function testMappingInputError(testCase)
    testCase.verifyFail();
end

function testScaling(testCase)
    in = {{1:2, 1:3}, {[1 2 3 4 5 6]', [7 8 9 10 11 12]'}};
    g = grid.Curvilinear(in{2},in{1}{:});

    testCase.verifyError(@()g.scaling(),'grid:Curvilinear:NoScalingSet');

    g.logicalGrid.h = [2 1];
    testCase.verifyEqual(g.scaling(),[2 1]);
end

function testGetBoundaryNames(testCase)
    in = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    out = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };

    for i = 1:length(in)
        g = grid.Curvilinear(in{i}{2},in{i}{1}{:});
        testCase.verifyEqual(g.getBoundaryNames(), out{i});
    end
end

function testGetBoundary(testCase)
    grids = {
        {{1:10}, @(x) exp(x)},
        {{1:10,1:6}, @(x,y) [exp(x+y); exp(x-y)]},
        {{1:10,1:5,1:7}, @(x,y,z)[exp(x+y+z); exp(x-y-z); 2+x+y-z]},
    };

    boundaries = {
        {'l', 'r'},
        {'w', 'e', 's', 'n'},
        {'w', 'e', 's', 'n', 'd', 'u'},
    };


    for ig = 1:length(grids)
        g = grid.Curvilinear(grids{ig}{2},grids{ig}{1}{:});

        logicalGrid = grid.Cartesian(grids{ig}{1}{:});

        for ib = 1:length(boundaries{ig})

            logicalBoundary = logicalGrid.getBoundary(boundaries{ig}{ib});

            x = num2cell(logicalBoundary',2);
            expectedBoundary = grids{ig}{2}(x{:})';
            testCase.verifyEqual(g.getBoundary(boundaries{ig}{ib}), expectedBoundary);
        end
    end
end