Mercurial > repos > public > sbplib
view +scheme/Schrodinger1dCurve.m @ 430:25053554524b feature/quantumTriangles
Removed some comments
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Wed, 08 Feb 2017 09:07:07 +0100 |
parents | dde5760863de |
children | 6b8297f66c91 |
line wrap: on
line source
classdef Schrodinger1dCurve < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing xi % Grid order % Order accuracy for the approximation grid D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha V_mat D1 D2 Hi e_l e_r d1_l d1_r gamm end methods % Solving SE in the form u_t = i*u_xx +i*V on deforming 1D domain; function obj = Schrodinger1dCurve(m,order,V,constJi) default_arg('V',0); default_arg('constJi',false) xilim={0 1}; if constJi ops = sbp.D2Standard(m,xilim,order); else ops = sbp.D4Variable(m,xilim,order); end obj.xi=ops.x; obj.h=ops.h; obj.D2 = ops.D2; obj.D1 = ops.D1; obj.H = ops.H; obj.Hi = ops.HI; obj.M = ops.M; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.d1_l = ops.d1_l; obj.d1_r = ops.d1_r; if isa(V,'function_handle') V_vec = V(obj.x); else V_vec = obj.xi*0 + V; end obj.V_mat = spdiags(V_vec,0,m,m); obj.D = @(a,a_xi,Ji) obj.d_fun(a, a_xi, Ji, constJi); obj.m = m; obj.order = order; end % Closure functions return the opertors appliedo to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [D] = d_fun(obj,a, a_xi , Ji , constJi) if constJi D= -0.5*(obj.D1*a - a_xi + a*obj.D1) + 1i*Ji*obj.D2 + 1i*obj.V_mat; else D= -0.5*(obj.D1*a - a_xi + a*obj.D1) + 1i*obj.D2(diag(Ji)) + 1i*obj.V_mat; end end function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','dirichlet'); default_arg('data',0); [e,d,s,p] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tau1 = s * 1i*d; tau2 = @(a) (-1*s*a(p,p) - abs(a(p,p)))/4*e; closure = @(a) obj.Hi*tau1*e' + obj.Hi*tau2(a)*e'; switch class(data) case 'double' penalty = @(a) -(obj.Hi*tau1*data+obj.Hi*tau2(a)*data); % case 'function_handle' % penalty = @(t)-obj.Hi*tau*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); % [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); % a = -s_u* 1/2 * 1i ; % b = a'; % tau = b*d_u; % sig = -a*e_u; % closure = obj.Hi * (tau*e_u' + sig*d_u'); % penalty = obj.Hi * (-tau*e_v' - sig*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s,p] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d1_l; s = -1; p=1; case 'r' e = obj.e_r; d = obj.d1_r; s = 1; p=obj.m; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end