Mercurial > repos > public > sbplib
view +scheme/Beam.m @ 578:1fe16b34f114 feature/grids
Add a type check for the grids cell array and a note regarding missplaced method
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 07 Sep 2017 09:18:55 +0200 |
parents | dfb27a7e801f |
children | 4ced7d47bd1f |
line wrap: on
line source
classdef Beam < scheme.Scheme properties order % Order accuracy for the approximation grid D % non-stabalized scheme operator alpha h H % Discrete norm Hi e_l, e_r d1_l, d1_r d2_l, d2_r d3_l, d3_r gamm delt alphaII alphaIII opt end methods function obj = Beam(grid, order, alpha, opsGen, opt) default_arg('alpha', -1); % default_arg('opsGen', @sbp.D4); default_arg('opsGen', @sbp.D4Variable); % Supposed to be better opt_default.interface_l.tuning = 1.1; opt_default.interface_l.tau = []; opt_default.interface_l.sig = []; opt_default.interface_r.tuning = 1.1; opt_default.interface_r.tau = []; opt_default.interface_r.sig = []; default_struct('opt', opt_default); if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1 error('Grid must be 1d cartesian'); end obj.grid = grid; obj.order = order; obj.alpha = alpha; m = grid.m; h = grid.scaling(); x_lim = {grid.x{1}(1), grid.x{1}(end)}; ops = opsGen(m, x_lim, order); D4 = ops.D4; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.d1_l = ops.d1_l; obj.d1_r = ops.d1_r; obj.d2_l = ops.d2_l; obj.d2_r = ops.d2_r; obj.d3_l = ops.d3_l; obj.d3_r = ops.d3_r; obj.D = alpha*D4; alphaII = ops.borrowing.N.S2/2; alphaIII = ops.borrowing.N.S3/2; obj.gamm = h*alphaII; obj.delt = h^3*alphaIII; obj.alphaII = alphaII; obj.alphaIII = alphaIII; obj.h = h; obj.opt = opt; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dn'); [e, d1, d2, d3, s] = obj.get_boundary_ops(boundary); gamm = obj.gamm; delt = obj.delt; % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ... switch type case {'dn', 'clamped'} % Dirichlet-neumann boundary condition alpha = obj.alpha; % tau1 < -alpha^2/gamma % tuning = 2; tuning = 1.1; tau1 = tuning * alpha/delt; tau4 = s*alpha; sig2 = tuning * alpha/gamm; sig3 = -s*alpha; tau = tau1*e+tau4*d3; sig = sig2*d1+sig3*d2; closure = obj.Hi*(tau*e' + sig*d1'); penalty{1} = -obj.Hi*tau; penalty{2} = -obj.Hi*sig; case {'free'} a = obj.alpha; tau = s*a*d1; sig = -s*a*e; closure = obj.Hi*(tau*d2' + sig*d3'); penalty{1} = -obj.Hi*tau; penalty{1} = -obj.Hi*sig; otherwise % Unknown, boundary condition error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d1_u,d2_u,d3_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d1_v,d2_v,d3_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); alpha_u = obj.alpha; alpha_v = neighbour_scheme.alpha; switch boundary case 'l' interface_opt = obj.opt.interface_l; case 'r' interface_opt = obj.opt.interface_r; end if isempty(interface_opt.tau) && isempty(interface_opt.sig) gamm_u = obj.gamm; delt_u = obj.delt; gamm_v = neighbour_scheme.gamm; delt_v = neighbour_scheme.delt; tuning = interface_opt.tuning; tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; else h_u = obj.h; h_v = neighbour_scheme.h; switch neighbour_boundary case 'l' neighbour_interface_opt = neighbour_scheme.opt.interface_l; case 'r' neighbour_interface_opt = neighbour_scheme.opt.interface_r; end tau_u = interface_opt.tau; sig_u = interface_opt.sig; tau_v = neighbour_interface_opt.tau; sig_v = neighbour_interface_opt.sig; tau1 = tau_u/h_u^3 + tau_v/h_v^3; sig2 = sig_u/h_u + sig_v/h_v; end tau4 = s_u*alpha_u/2; sig3 = -s_u*alpha_u/2; phi2 = s_u*1/2; psi1 = -s_u*1/2; tau = tau1*e_u + tau4*d3_u; sig = sig2*d1_u + sig3*d2_u ; phi = phi2*d1_u ; psi = psi1*e_u ; closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); end % Returns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e, d1, d2, d3, s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d1 = obj.d1_l; d2 = obj.d2_l; d3 = obj.d3_l; s = -1; case 'r' e = obj.e_r; d1 = obj.d1_r; d2 = obj.d2_r; d3 = obj.d3_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.grid.N; end end end