Mercurial > repos > public > sbplib
view +rv/+time/rungekuttaRV.m @ 1012:1e437c9e5132 feature/advectionRV
Create residual viscosity package +rv and generalize the ResidualViscosity class
- Generalize residual viscosity, by passing user-defined flux and calculating the time derivative outside of the update.
- Create separate RungekuttaRV specifically using interior RV updates
- Separate the artifical dissipation operator from the scheme AdvectionRV1D so that the same scheme can be reused for creating the diff op used by the ResidualViscosity class
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 05 Dec 2018 13:44:10 +0100 |
parents | +time/+rk/rungekuttaRV.m@1c6f1595bb94 |
children | 2d7c1333bd6c |
line wrap: on
line source
% Takes one time step of size dt using the rungekutta method % starting from v and where the function F(v,t,RV) gives the % time derivatives. coeffs is a struct holding the RK coefficients % for the specific method. RV is the residual viscosity which is updated % in between the stages and after the updated solution is computed. function v = rungekuttaRV(v, t , dt, F, RV, coeffs) % Move one stage outside to avoid branching for updating the % residual inside the loop. k = zeros(length(v), coeffs.s); k(:,1) = F(v,t,RV.getViscosity()); % Compute the intermediate stages k for i = 2:coeffs.s u = v; for j = 1:i-1 u = u + dt*coeffs.a(i,j)*k(:,j); end RV.update(0.5*(u+v),(u-v)/(coeffs.c(i)*dt)); % Crank-Nicholson for time discretization k(:,i) = F(u,t+coeffs.c(i)*dt, RV.getViscosity()); end % Compute the updated solution as a linear combination % of the intermediate stages. u = v; for i = 1:coeffs.s u = u + dt*coeffs.b(i)*k(:,i); end RV.update(0.5*(u+v),(u-v)/dt); % Crank-Nicholson for time discretization v = u; end