Mercurial > repos > public > sbplib
view +scheme/Heat2dVariable.m @ 1221:0c906f7ab8bf rv_diffOp_test
Attempt to reduce unnessecary operations when using the RV diffOps. Does not seem to improve efficiency at this stage.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:56:29 +0100 |
parents | 21394c78c72e |
children | 78db023a7fe3 |
line wrap: on
line source
classdef Heat2dVariable < scheme.Scheme % Discretizes the Laplacian with variable coefficent, % In the Heat equation way (i.e., the discretization matrix is not necessarily % symmetric) % u_t = div * (kappa * grad u ) % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrix for variable coefficients KAPPA % Variable coefficient D % Total operator D1 % First derivatives % Second derivatives D2_kappa H, Hi % Inner products e_l, e_r d1_l, d1_r % Normal derivatives at the boundary alpha % Vector of borrowing constants H_boundary % Boundary inner products end methods function obj = Heat2dVariable(g ,order, kappa_fun, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('kappa_fun', @(x,y) 0*x+1); dim = 2; assert(isa(g, 'grid.Cartesian')) kappa = grid.evalOn(g, kappa_fun); m = g.size(); m_tot = g.N(); h = g.scaling(); lim = g.lim; % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), lim{i}, order); end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end %====== Assemble full operators ======== KAPPA = spdiag(kappa); obj.KAPPA = KAPPA; obj.D1 = cell(dim,1); obj.D2_kappa = cell(dim,1); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 for i = 1:dim obj.D2_kappa{i} = sparse(m_tot); end ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m(2) D_kappa = D2{1}(kappa(ind(:,i))); p = ind(:,i); obj.D2_kappa{1}(p,p) = D_kappa; end for i = 1:m(1) D_kappa = D2{2}(kappa(ind(i,:))); p = ind(i,:); obj.D2_kappa{2}(p,p) = D_kappa; end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary = cell(dim,1); obj.H_boundary{1} = H{2}; obj.H_boundary{2} = H{1}; % Differentiation matrix D (without SAT) D2_kappa = obj.D2_kappa; D1 = obj.D1; D = sparse(m_tot,m_tot); for i = 1:dim D = D + D2_kappa{i}; end obj.D = D; %=========================================% % Misc. obj.m = m; obj.h = h; obj.order = order; obj.grid = g; obj.dim = dim; obj.alpha = [ops{1}.borrowing.M.d1, ops{2}.borrowing.M.d1]; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, type, symmetric, tuning) default_arg('type','Neumann'); default_arg('symmetric', false); default_arg('tuning',1.2); % j is the coordinate direction of the boundary % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries [j, nj] = obj.get_boundary_number(boundary); switch nj case 1 e = obj.e_r; d = obj.d1_r; case -1 e = obj.e_l; d = obj.d1_l; end Hi = obj.Hi; H_gamma = obj.H_boundary{j}; KAPPA = obj.KAPPA; kappa_gamma = e{j}'*KAPPA*e{j}; h = obj.h(j); alpha = h*obj.alpha(j); switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} if ~symmetric closure = -nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' ); penalty = nj*Hi*d{j}*kappa_gamma*H_gamma; else closure = nj*Hi*d{j}*kappa_gamma*H_gamma*(e{j}' )... -tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma*(e{j}' ) ; penalty = -nj*Hi*d{j}*kappa_gamma*H_gamma ... +tuning*2/alpha*Hi*e{j}*kappa_gamma*H_gamma; end % Free boundary condition case {'N','n','neumann','Neumann'} closure = -nj*Hi*e{j}*kappa_gamma*H_gamma*(d{j}' ); penalty = Hi*e{j}*kappa_gamma*H_gamma; % penalty is for normal derivative and not for derivative, hence the sign. % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain error('Interface not implemented'); end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [return_op] = get_boundary_operator(obj, op, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch op case 'e' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.e_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.e_r{j}; end case 'd' switch boundary case {'w','W','west','West','s','S','south','South'} return_op = obj.d1_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} return_op = obj.d1_r{j}; end otherwise error(['No such operator: operatr = ' op]); end end function N = size(obj) N = prod(obj.m); end end end