view testArcLength.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents
children
line wrap: on
line source

m = 201; L = 1; order = 4;
close all;
tic

g1 = @(t) 2*pi*t.*sin(2*pi*t);
g2 = @(t) 2*pi*t.*cos(2*pi*t);
g = @(t) [g1(t);g2(t)];

t = linspace(0,L,m)'; dt = L/(m-1);
ops = sbp.Ordinary(m,dt,order);
D = ops.derivatives.D1;

C = grid.Curve(g,[],[],D);

% Function
figure;
C.plot([],'bo');
hold on
plot(g1(t),g2(t),'r-');
drawnow

% Derivative
figure
C.plot_derivative([],'bo');
hold on;
plot(2*pi*sin(2*pi*t) + (2*pi)^2*t.*cos(2*pi*t),...
    2*pi*cos(2*pi*t) - (2*pi)^2*t.*sin(2*pi*t),'r-')
drawnow

% Arc length
L = C.arc_length_fun(t);
figure;
plot(t,L)
drawnow

% Stretch curve
C2 = C.stretch_parameter();
z = linspace(0,1,m);
gnew = C2.g(z);
gpnew = C2.gp(z);

% Compare stretched and unstretched curves.
figure
plot(g1(t),g2(t),'b*',gnew(1,:),gnew(2,:),'ro');

% Compare stretched and unstretched derivatives. 
figure
theta = linspace(0,2*pi,100);
plot(cos(theta),sin(theta),'-b',gpnew(1,:),gpnew(2,:),'rx');

toc