Mercurial > repos > public > sbplib
view testArcLength.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | |
children |
line wrap: on
line source
m = 201; L = 1; order = 4; close all; tic g1 = @(t) 2*pi*t.*sin(2*pi*t); g2 = @(t) 2*pi*t.*cos(2*pi*t); g = @(t) [g1(t);g2(t)]; t = linspace(0,L,m)'; dt = L/(m-1); ops = sbp.Ordinary(m,dt,order); D = ops.derivatives.D1; C = grid.Curve(g,[],[],D); % Function figure; C.plot([],'bo'); hold on plot(g1(t),g2(t),'r-'); drawnow % Derivative figure C.plot_derivative([],'bo'); hold on; plot(2*pi*sin(2*pi*t) + (2*pi)^2*t.*cos(2*pi*t),... 2*pi*cos(2*pi*t) - (2*pi)^2*t.*sin(2*pi*t),'r-') drawnow % Arc length L = C.arc_length_fun(t); figure; plot(t,L) drawnow % Stretch curve C2 = C.stretch_parameter(); z = linspace(0,1,m); gnew = C2.g(z); gpnew = C2.gp(z); % Compare stretched and unstretched curves. figure plot(g1(t),g2(t),'b*',gnew(1,:),gnew(2,:),'ro'); % Compare stretched and unstretched derivatives. figure theta = linspace(0,2*pi,100); plot(cos(theta),sin(theta),'-b',gpnew(1,:),gpnew(2,:),'rx'); toc