view convergenceTable.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents ddfb98209aa2
children 6a5e94bb5e13
line wrap: on
line source

function convergenceTable(methodName, T, orders, m, e, q, tableType)
    default_arg('tableType','plaintext')

    switch tableType
        case {'plaintext','text','plain'}
            plainTextTable(methodName, T, orders, m, e, q);
        case {'tex', 'latex'}
            latexTable(methodName, T, orders, m, e, q);
    end
end

function plainTextTable(methodName, T, orders, m, e, q)


    eW = 0;
    qW = 0;
    for i = 1:length(orders)
        log_e{i} = log10(e{i});
        eW = max(eW, findFieldWidth('%.2f',log_e{i}));
        qW = max(qW, findFieldWidth('%.2f',q{i}));
    end

    mW = findFieldWidth('%d',m);
    orderHeaderWidth = eW + qW + 1;

    fprintf('method: %s\nT: %d\n',methodName, T);

    % Print order headers
    fprintf(' %*s |',mW,'')
    for i = 1:length(orders)
        fprintf(' %-*s |', orderHeaderWidth, sprintf('Order %d', orders{i}));
    end
    fprintf('\n');


    % Print eq headers
    fprintf(' %*s |',mW,'m');
    for i = 1:length(orders)
        fprintf(' %*s %*s |', eW, 'e', qW, 'q');
    end
    fprintf('\n');


    % Print devider
    m_dev = repmat('-',1,mW);
    column_dev = repmat('-',1,orderHeaderWidth);
    fprintf('-%s-+',m_dev);
    for i = 1:length(orders)
        fprintf('-%s-+', column_dev);
    end
    fprintf('\n');



    % Print each row
    for i = 1:length(m)
        fprintf(' %*d |',mW,m(i));
        for j = 1:length(orders)
            if i == 1
                fprintf(' %*.2f %*s |', eW, log_e{j}(i), qW, '');
            else
                fprintf(' %*.2f %*.2f |', eW, log_e{j}(i), qW, q{j}(i-1));
            end
        end
        fprintf('\n');
    end

    fprintf('\n');

end

function latexTable(methodName, T, orders, m, e, q)

    nOrders = length(orders);

    header = {
        '\begin{table}[H]'
        '\centering'
        ['\begin{tabular}{c' repmat('|cc',1,nOrders) '} &']
        orderheaders(orders)
        '\hline'
        ['$N$'   repmat('& $log_{10}(l_2)$ & $q$',1,nOrders) ' \\']
        '\hline'
    };

    footer = {
        '\end{tabular}'
        '\caption{Error $l_2$, and convergence rate, $q$, for SBP operators of orders 4 and 6 at different grid densities $N$. PROBLEM DESCRIPTION.}'
        '\label{table:LABEL}'
        '\end{table}'
    };

    data = cell(1,length(m));
    data{1} = num2str(m(1));
    for j = 1:nOrders
        data{1} = [data{1} ' & ' sprintf('%8.2f',log10(orders(j).e(1))) ' &         ' ];
    end
    data{1} = [data{1} '\\'];

    for i = 2:length(m)
        data{i} = [data{i} num2str(m(i))  ];
        for j = 1:nOrders
            data{i} = [data{i} ' & ' sprintf('%8.2f',log10(orders(j).e(i)))  ' & '  sprintf('%8.2f',(orders(j).q(i-1))) ];
        end
        data{i} = [data{i} '\\'];
    end

    nlc = sprintf('\n');

    header = strjoin(header', nlc);
    data = strjoin(data, nlc);
    footer = strjoin(footer', nlc);

    table = strjoin({header, data, footer}, nlc);
    fprintf('%s\n', table);
end



function s = orderheaders(orders)
    s= sprintf('\\multicolumn{2}{|c}{%dth order}',orders(1).order);
    nOrders = length(orders);
    for i = 2:nOrders
        s = [s sprintf('& \\multicolumn{2}{|c}{%dth order}',orders(i).order)];
    end
    s = [s ' \\'];
end