Mercurial > repos > public > sbplib
view convergenceTable.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | ddfb98209aa2 |
children | 6a5e94bb5e13 |
line wrap: on
line source
function convergenceTable(methodName, T, orders, m, e, q, tableType) default_arg('tableType','plaintext') switch tableType case {'plaintext','text','plain'} plainTextTable(methodName, T, orders, m, e, q); case {'tex', 'latex'} latexTable(methodName, T, orders, m, e, q); end end function plainTextTable(methodName, T, orders, m, e, q) eW = 0; qW = 0; for i = 1:length(orders) log_e{i} = log10(e{i}); eW = max(eW, findFieldWidth('%.2f',log_e{i})); qW = max(qW, findFieldWidth('%.2f',q{i})); end mW = findFieldWidth('%d',m); orderHeaderWidth = eW + qW + 1; fprintf('method: %s\nT: %d\n',methodName, T); % Print order headers fprintf(' %*s |',mW,'') for i = 1:length(orders) fprintf(' %-*s |', orderHeaderWidth, sprintf('Order %d', orders{i})); end fprintf('\n'); % Print eq headers fprintf(' %*s |',mW,'m'); for i = 1:length(orders) fprintf(' %*s %*s |', eW, 'e', qW, 'q'); end fprintf('\n'); % Print devider m_dev = repmat('-',1,mW); column_dev = repmat('-',1,orderHeaderWidth); fprintf('-%s-+',m_dev); for i = 1:length(orders) fprintf('-%s-+', column_dev); end fprintf('\n'); % Print each row for i = 1:length(m) fprintf(' %*d |',mW,m(i)); for j = 1:length(orders) if i == 1 fprintf(' %*.2f %*s |', eW, log_e{j}(i), qW, ''); else fprintf(' %*.2f %*.2f |', eW, log_e{j}(i), qW, q{j}(i-1)); end end fprintf('\n'); end fprintf('\n'); end function latexTable(methodName, T, orders, m, e, q) nOrders = length(orders); header = { '\begin{table}[H]' '\centering' ['\begin{tabular}{c' repmat('|cc',1,nOrders) '} &'] orderheaders(orders) '\hline' ['$N$' repmat('& $log_{10}(l_2)$ & $q$',1,nOrders) ' \\'] '\hline' }; footer = { '\end{tabular}' '\caption{Error $l_2$, and convergence rate, $q$, for SBP operators of orders 4 and 6 at different grid densities $N$. PROBLEM DESCRIPTION.}' '\label{table:LABEL}' '\end{table}' }; data = cell(1,length(m)); data{1} = num2str(m(1)); for j = 1:nOrders data{1} = [data{1} ' & ' sprintf('%8.2f',log10(orders(j).e(1))) ' & ' ]; end data{1} = [data{1} '\\']; for i = 2:length(m) data{i} = [data{i} num2str(m(i)) ]; for j = 1:nOrders data{i} = [data{i} ' & ' sprintf('%8.2f',log10(orders(j).e(i))) ' & ' sprintf('%8.2f',(orders(j).q(i-1))) ]; end data{i} = [data{i} '\\']; end nlc = sprintf('\n'); header = strjoin(header', nlc); data = strjoin(data, nlc); footer = strjoin(footer', nlc); table = strjoin({header, data, footer}, nlc); fprintf('%s\n', table); end function s = orderheaders(orders) s= sprintf('\\multicolumn{2}{|c}{%dth order}',orders(1).order); nOrders = length(orders); for i = 2:nOrders s = [s sprintf('& \\multicolumn{2}{|c}{%dth order}',orders(i).order)]; end s = [s ' \\']; end