Mercurial > repos > public > sbplib
view +time/+rk4/rk4_stability.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 48b6fb693025 |
children |
line wrap: on
line source
function rk_stability() ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4)); circ = @(z)(abs(z)); % contour(X,Y,z) ax = [-4 2 -3 3]; % hold on fcontour(ruku4,[1,1],[-3, 0.6],[-3.2, 3.2]) hold on r = 2.6; fcontour(circ,[r,r],[-3, 0.6],[-3.2, 3.2],'r') hold off % contour(X,Y,z,[1,1],'b') axis(ax) title('4th order Runge-Kutta stability region') xlabel('Re') ylabel('Im') axis equal grid on box on hold off % surf(X,Y,z) rk4roots() end function fcontour(f,levels,x_lim,y_lim,opt) default_arg('opt','b') x = linspace(x_lim(1),x_lim(2)); y = linspace(y_lim(1),y_lim(2)); [X,Y] = meshgrid(x,y); mu = X+ 1i*Y; z = f(mu); contour(X,Y,z,levels,opt) end function rk4roots() ruku4 = @(z)(abs(1 + z +(1/2)*z.^2 + (1/6)*z.^3 + (1/24)*z.^4)); % Roots for real evalues: F = @(x)(abs(ruku4(x))-1); real_x = fzero(F,-3); % Roots for imaginary evalues: F = @(x)(abs(ruku4(1i*x))-1); imag_x1 = fzero(F,-3); imag_x2 = fzero(F,3); fprintf('Real x = %f\n',real_x) fprintf('Imag x = %f\n',imag_x1) fprintf('Imag x = %f\n',imag_x2) end