Mercurial > repos > public > sbplib
view +scheme/Schrodinger.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 446d67a49cd8 |
children | 29944ea7674b 459eeb99130f |
line wrap: on
line source
classdef Schrodinger < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x % Grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha D2 Hi e_l e_r d1_l d1_r gamm end methods % Solving SE in the form u_t = i*u_xx -i*V; function obj = Schrodinger(m,xlim,order,V) default_arg('V',0); [x, h] = util.get_grid(xlim{:},m); ops = sbp.Ordinary(m,h,order); obj.D2 = sparse(ops.derivatives.D2); obj.H = sparse(ops.norms.H); obj.Hi = sparse(ops.norms.HI); obj.M = sparse(ops.norms.M); obj.e_l = sparse(ops.boundary.e_1); obj.e_r = sparse(ops.boundary.e_m); obj.d1_l = sparse(ops.boundary.S_1); obj.d1_r = sparse(ops.boundary.S_m); if isa(V,'function_handle') V_vec = V(x); else V_vec = x*0 + V; end V_mat = spdiags(V_vec,0,m,m); obj.D = 1i * obj.D2 - 1i * V_mat; obj.m = m; obj.h = h; obj.order = order; obj.x = x; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','dirichlet'); default_arg('data',0); [e,d,s] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tau = s * 1i*d; closure = obj.Hi*tau*e'; switch class(data) case 'double' penalty = -obj.Hi*tau*data; case 'function_handle' penalty = @(t)-obj.Hi*tau*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); a = -s_u* 1/2 * 1i ; b = a'; tau = b*d_u; sig = -a*e_u; closure = obj.Hi * (tau*e_u' + sig*d_u'); penalty = obj.Hi * (-tau*e_v' - sig*d_v'); end % Ruturns the boundary ops and sign for the boundary specified by the string boundary. % The right boundary is considered the positive boundary function [e,d,s] = get_boundary_ops(obj,boundary) switch boundary case 'l' e = obj.e_l; d = obj.d1_l; s = -1; case 'r' e = obj.e_r; d = obj.d1_r; s = 1; otherwise error('No such boundary: boundary = %s',boundary); end end function N = size(obj) N = obj.m; end end methods(Static) % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u % and bound_v of scheme schm_v. % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); end end end