view +scheme/Schrodinger.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents 446d67a49cd8
children 29944ea7674b 459eeb99130f
line wrap: on
line source

classdef Schrodinger < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        x % Grid
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        H % Discrete norm
        M % Derivative norm
        alpha

        D2
        Hi
        e_l
        e_r
        d1_l
        d1_r
        gamm
    end

    methods
        % Solving SE in the form u_t = i*u_xx -i*V;
        function obj = Schrodinger(m,xlim,order,V)
            default_arg('V',0);

            [x, h] = util.get_grid(xlim{:},m);

            ops = sbp.Ordinary(m,h,order);

            obj.D2 = sparse(ops.derivatives.D2);
            obj.H =  sparse(ops.norms.H);
            obj.Hi = sparse(ops.norms.HI);
            obj.M =  sparse(ops.norms.M);
            obj.e_l = sparse(ops.boundary.e_1);
            obj.e_r = sparse(ops.boundary.e_m);
            obj.d1_l = sparse(ops.boundary.S_1);
            obj.d1_r = sparse(ops.boundary.S_m);


            if isa(V,'function_handle')
                V_vec = V(x);
            else
                V_vec = x*0 + V;
            end

            V_mat = spdiags(V_vec,0,m,m);

            obj.D = 1i * obj.D2 - 1i * V_mat;

            obj.m = m;
            obj.h = h;
            obj.order = order;

            obj.x = x;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','dirichlet');
            default_arg('data',0);

            [e,d,s] = obj.get_boundary_ops(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    tau = s * 1i*d;
                    closure = obj.Hi*tau*e';

                    switch class(data)
                        case 'double'
                            penalty = -obj.Hi*tau*data;
                        case 'function_handle'
                            penalty = @(t)-obj.Hi*tau*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d_u,s_u] = obj.get_boundary_ops(boundary);
            [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            a =  -s_u* 1/2 * 1i ;
            b =  a';

            tau = b*d_u;
            sig = -a*e_u;

            closure = obj.Hi * (tau*e_u' + sig*d_u');
            penalty = obj.Hi * (-tau*e_v' - sig*d_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,d,s] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'l'
                    e = obj.e_l;
                    d = obj.d1_l;
                    s = -1;
                case 'r'
                    e = obj.e_r;
                    d = obj.d1_r;
                    s = 1;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = obj.m;
        end

    end

    methods(Static)
        % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u
        % and bound_v of scheme schm_v.
        %   [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l')
        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
        end
    end
end