view +scheme/Beam2d.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents 48b6fb693025
children d52e5cdb6eff
line wrap: on
line source

classdef SchmBeam2d < noname.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        N % Number of points total
        h % Grid spacing
        u,v % Grid
        x,y % Values of x and y for each grid point
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        M % Derivative norm
        alpha

        H % Discrete norm
        Hi
        H_x, H_y % Norms in the x and y directions
        Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
        Hi_x, Hi_y
        Hix, Hiy
        e_w, e_e, e_s, e_n
        d1_w, d1_e, d1_s, d1_n
        d2_w, d2_e, d2_s, d2_n
        d3_w, d3_e, d3_s, d3_n
        gamm_x, gamm_y
        delt_x, delt_y
    end

    methods
        function obj = SchmBeam2d(m,lim,order,alpha,opsGen)
            default_arg('opsGen',@sbp.Higher);
            default_arg('a',1);

            if length(m) == 1
                m = [m m];
            end

            m_x = m(1);
            m_y = m(2);

            xlim = lim{1};
            ylim = lim{2};

            [x, h_x] = util.get_grid(xlim{:},m_x);
            [y, h_y] = util.get_grid(ylim{:},m_y);

            ops_x = opsGen(m_x,h_x,order);
            ops_y = opsGen(m_y,h_y,order);

            I_x = speye(m_x);
            I_y = speye(m_y);




            D4_x = sparse(ops_x.derivatives.D4);
            H_x =  sparse(ops_x.norms.H);
            Hi_x = sparse(ops_x.norms.HI);
            e_l_x = sparse(ops_x.boundary.e_1);
            e_r_x = sparse(ops_x.boundary.e_m);
            d1_l_x = sparse(ops_x.boundary.S_1);
            d1_r_x = sparse(ops_x.boundary.S_m);
            d2_l_x  = sparse(ops_x.boundary.S2_1);
            d2_r_x  = sparse(ops_x.boundary.S2_m);
            d3_l_x  = sparse(ops_x.boundary.S3_1);
            d3_r_x  = sparse(ops_x.boundary.S3_m);

            D4_y = sparse(ops_y.derivatives.D4);
            H_y =  sparse(ops_y.norms.H);
            Hi_y = sparse(ops_y.norms.HI);
            e_l_y = sparse(ops_y.boundary.e_1);
            e_r_y = sparse(ops_y.boundary.e_m);
            d1_l_y = sparse(ops_y.boundary.S_1);
            d1_r_y = sparse(ops_y.boundary.S_m);
            d2_l_y  = sparse(ops_y.boundary.S2_1);
            d2_r_y  = sparse(ops_y.boundary.S2_m);
            d3_l_y  = sparse(ops_y.boundary.S3_1);
            d3_r_y  = sparse(ops_y.boundary.S3_m);


            D4 = kr(D4_x, I_y) + kr(I_x, D4_y);

            % Norms
            obj.H = kr(H_x,H_y);
            obj.Hx  = kr(H_x,I_x);
            obj.Hy  = kr(I_x,H_y);
            obj.Hix = kr(Hi_x,I_y);
            obj.Hiy = kr(I_x,Hi_y);
            obj.Hi = kr(Hi_x,Hi_y);

            % Boundary operators
            obj.e_w  = kr(e_l_x,I_y);
            obj.e_e  = kr(e_r_x,I_y);
            obj.e_s  = kr(I_x,e_l_y);
            obj.e_n  = kr(I_x,e_r_y);
            obj.d1_w = kr(d1_l_x,I_y);
            obj.d1_e = kr(d1_r_x,I_y);
            obj.d1_s = kr(I_x,d1_l_y);
            obj.d1_n = kr(I_x,d1_r_y);
            obj.d2_w = kr(d2_l_x,I_y);
            obj.d2_e = kr(d2_r_x,I_y);
            obj.d2_s = kr(I_x,d2_l_y);
            obj.d2_n = kr(I_x,d2_r_y);
            obj.d3_w = kr(d3_l_x,I_y);
            obj.d3_e = kr(d3_r_x,I_y);
            obj.d3_s = kr(I_x,d3_l_y);
            obj.d3_n = kr(I_x,d3_r_y);

            obj.m = m;
            obj.h = [h_x h_y];
            obj.order = order;

            obj.alpha = alpha;
            obj.D = alpha*D4;
            obj.u = x;
            obj.v = y;
            obj.x = kr(x,ones(m_y,1));
            obj.y = kr(ones(m_x,1),y);

            obj.gamm_x = h_x*ops_x.borrowing.N.S2/2;
            obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2;

            obj.gamm_y = h_y*ops_y.borrowing.N.S2/2;
            obj.delt_y = h_y^3*ops_y.borrowing.N.S3/2;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty_e,penalty_d] = boundary_condition(obj,boundary,type,data)
            default_arg('type','dn');
            default_arg('data',0);

            [e,d1,d2,d3,s,gamm,delt,halfnorm_inv] = obj.get_boundary_ops(boundary);

            switch type
                % Dirichlet-neumann boundary condition
                case {'dn'}
                    alpha = obj.alpha;

                    % tau1 < -alpha^2/gamma
                    tuning = 1.1;

                    tau1 = tuning * alpha/delt;
                    tau4 = s*alpha;

                    sig2 = tuning * alpha/gamm;
                    sig3 = -s*alpha;

                    tau = tau1*e+tau4*d3;
                    sig = sig2*d1+sig3*d2;

                    closure = halfnorm_inv*(tau*e' + sig*d1');

                    pp_e = halfnorm_inv*tau;
                    pp_d = halfnorm_inv*sig;
                    switch class(data)
                        case 'double'
                            penalty_e = pp_e*data;
                            penalty_d = pp_d*data;
                        case 'function_handle'
                            penalty_e = @(t)pp_e*data(t);
                            penalty_d = @(t)pp_d*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
            [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);

            tuning = 2;

            alpha_u = obj.alpha;
            alpha_v = neighbour_scheme.alpha;

            tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
            % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning;
            tau4 = s_u*alpha_u/2;

            sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
            sig3 = -s_u*alpha_u/2;

            phi2 = s_u*1/2;

            psi1 = -s_u*1/2;

            tau = tau1*e_u  +                     tau4*d3_u;
            sig =           sig2*d1_u + sig3*d2_u          ;
            phi =           phi2*d1_u                      ;
            psi = psi1*e_u                                 ;

            closure =  halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
            penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
        end

        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
        % The right boundary is considered the positive boundary
        function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary)
            switch boundary
                case 'w'
                    e  = obj.e_w;
                    d1 = obj.d1_w;
                    d2 = obj.d2_w;
                    d3 = obj.d3_w;
                    s = -1;
                    gamm = obj.gamm_x;
                    delt = obj.delt_x;
                    halfnorm_inv = obj.Hix;
                case 'e'
                    e  = obj.e_e;
                    d1 = obj.d1_e;
                    d2 = obj.d2_e;
                    d3 = obj.d3_e;
                    s = 1;
                    gamm = obj.gamm_x;
                    delt = obj.delt_x;
                    halfnorm_inv = obj.Hix;
                case 's'
                    e  = obj.e_s;
                    d1 = obj.d1_s;
                    d2 = obj.d2_s;
                    d3 = obj.d3_s;
                    s = -1;
                    gamm = obj.gamm_y;
                    delt = obj.delt_y;
                    halfnorm_inv = obj.Hiy;
                case 'n'
                    e  = obj.e_n;
                    d1 = obj.d1_n;
                    d2 = obj.d2_n;
                    d3 = obj.d3_n;
                    s = 1;
                    gamm = obj.gamm_y;
                    delt = obj.delt_y;
                    halfnorm_inv = obj.Hiy;
                otherwise
                    error('No such boundary: boundary = %s',boundary);
            end
        end

        function N = size(obj)
            N = prod(obj.m);
        end

    end
end