Mercurial > repos > public > sbplib
view +noname/calculateSolution.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 54d3ab296ba0 |
children | 8298734b1938 |
line wrap: on
line source
% Calculates the solution of discretization for a given set of ms ts and orders. % discrHand -- function handle to a Discretization constructor % method -- time stepping method % m -- grid parameter % order -- order of accuracy of the approximtion % T -- time to calculate solution for % input paramters m, t, order may all be vectors. function [] = calculateSolution(filename, discrHand, method, m, T_in, order, force_flag) default_arg('force_flag',false); if exist(filename,'file') && ~force_flag fprintf('File ''%s'' already exist.',filename); do_append = yesnoQuestion('Do you want to append to it?'); if ~do_append fprintf('Exiting...\n'); return end end sf = SolutionFile(filename); orderWidth = findFieldWidth('%d',order); mWidth = findFieldWidth('%d',m); TWidth = findFieldWidth('%d',T_in); for i = 1:length(order) for j = 1:length(m) T = sort(T_in); % Make sure times are sorted discr = discrHand(m(j),order(i)); k_max = discr.getTimestep(method); % Do we want to to save the initial conditions? if T(1) == 0 snapshot = discr.getTimeSnapshot(0); saveToFile(sf, method, order(i), m(j),T(1), snapshot, NaN, NaN, discr); T(1) = []; end % Find out if times to be calulated are integer multiples of the smallest one. time_multiples = T/T(1); is_int_multiples = all(time_multiples == int64(time_multiples)); if is_int_multiples fprintf('Calculating time series in increments\n'); else fprintf('Restarting for each time in timeseries\n'); end % T now contains all the times we need to step to, % if T contained 0 it has now been removed. if is_int_multiples % Times are integer multiples, we can save time [k,N] = alignedTimestep(k_max,T(1)); ts = discr.getTimestepper(method,k); runtime = 0; for l = 1:length(T) end_step = N * time_multiples(l); fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l)); clock_start = tic(); ts.stepN(end_step-ts.n,true); runtime = runtime + toc(clock_start); snapshot = discr.getTimeSnapshot(ts); saveToFile(sf, method, order(i), m(j),T(l), snapshot, runtime, k, discr); fprintf('Done! (%.3fs)\n',runtime); end else % Times are not interger multiples, we have to start from 0 every time. for l = 1:length(T) [k,N] = alignedTimestep(k_max,T(l)); ts = discr.getTimestepper(method,k); fprintf('[order = %-*d, m = %-*d, T = %-*d]: ',orderWidth,order(i),mWidth,m(j),TWidth,T(l)); clock_start = tic(); [v,t] = ts.stepN(N-ts.n,true); runtime = toc(clock_start); snapshot = discr.getTimeSnapshot(ts); saveToFile(sf, method, order(i), m(j),T(l), snapshot, runtime, k, discr); fprintf('Done! (%.3fs)\n',runtime); end end sf.stupidSave(); end end end function saveToFile(sf, method, order, m, T, snapshot, runtime, k, discr) key.method = method; key.order = order; key.m = m; key.T = T; entry.repr = snapshot; entry.runtime = runtime; entry.k = k; entry.discr = discr; sf.store(key,entry); end