Mercurial > repos > public > sbplib
view +multiblock/stitchSchemes.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 5c569cbef49e |
children | 8eb4e39df8a5 |
line wrap: on
line source
% Stitch schemes together given connection matrix and BC vector. % schmHand - function_handle to a Scheme constructor % order - order of accuracy % schmParam - cell array of extra parameters sent to each Scheme stored as cell arrays % blocks - block definitions, On whatever form the scheme expects. % ms - grid points in each direction for each block. Ex {[10,10], [10, 20]} % conn - connection matrix % bound - boundary condition vector, array of structs with fields w,e,s,n % each field with a parameter array that is sent to schm.boundary_condition % % Output parameters are cell arrays and cell matrices. % % Ex: [schms, D, H] = stitchSchemes(schmHand, order, schmParam, blocks, ms, conn, bound) function [schms, D, H] = stitchSchemes(schmHand, order, schmParam, blocks, ms, conn, bound) default_arg('schmParam',[]); n_blocks = numel(blocks); % Creating Schemes for i = 1:n_blocks if isempty(schmParam); schms{i} = schmHand(ms{i},blocks{i},order,[]); elseif ~iscell(schmParam) param = schmParam(i); schms{i} = schmHand(ms{i},blocks{i},order,param); else param = schmParam{i}; if iscell(param) schms{i} = schmHand(ms{i},blocks{i},order,param{:}); else schms{i} = schmHand(ms{i},blocks{i},order,param); end end % class(schmParam) % class(ms) % class(blocks) % class(schmParam{i}) % class(ms) end % Total norm H = cell(n_blocks,n_blocks); for i = 1:n_blocks H{i,i} = schms{i}.H; end %% Total system matrix % Differentiation terms D = cell(n_blocks,n_blocks); for i = 1:n_blocks D{i,i} = schms{i}.D; end % Boundary penalty terms for i = 1:n_blocks if ~isstruct(bound{i}) continue end fn = fieldnames(bound{i}); for j = 1:length(fn); bc = bound{i}.(fn{j}); if isempty(bc) continue end t = schms{i}.boundary_condition(fn{j},bc{:}); D{i,i} = D{i,i}+t; end end % Interface penalty terms for i = 1:n_blocks for j = 1:n_blocks intf = conn{i,j}; if isempty(intf) continue end [uu,uv,vv,vu] = schms{i}.interface_coupling(schms{i},intf{1},schms{j},intf{2}); D{i,i} = D{i,i} + uu; D{i,j} = uv; D{j,j} = D{j,j} + vv; D{j,i} = vu; end end end