view +multiblock/stitchSchemes.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents 5c569cbef49e
children 8eb4e39df8a5
line wrap: on
line source

% Stitch schemes together given connection matrix and BC vector.
%     schmHand  - function_handle to a Scheme constructor
%     order     - order of accuracy
%     schmParam - cell array of extra parameters sent to each Scheme stored as cell arrays
%     blocks    - block definitions, On whatever form the scheme expects.
%     ms        - grid points in each direction for each block. Ex {[10,10], [10, 20]}
%     conn      - connection matrix
%     bound     - boundary condition vector, array of structs with fields w,e,s,n
%                 each field with a parameter array that is sent to schm.boundary_condition
%
% Output parameters are cell arrays and cell matrices.
%
% Ex: [schms, D, H] = stitchSchemes(schmHand, order, schmParam, blocks, ms, conn, bound)
function [schms, D, H] = stitchSchemes(schmHand, order, schmParam, blocks, ms, conn, bound)
    default_arg('schmParam',[]);

    n_blocks = numel(blocks);

    % Creating Schemes
    for i = 1:n_blocks
        if isempty(schmParam);
            schms{i} = schmHand(ms{i},blocks{i},order,[]);
        elseif ~iscell(schmParam)
            param = schmParam(i);
            schms{i} = schmHand(ms{i},blocks{i},order,param);
        else
            param = schmParam{i};
            if iscell(param)
                schms{i} = schmHand(ms{i},blocks{i},order,param{:});
            else
                schms{i} = schmHand(ms{i},blocks{i},order,param);
            end
        end

        % class(schmParam)
        % class(ms)
        % class(blocks)
        % class(schmParam{i})
        % class(ms)


    end


    % Total norm
    H = cell(n_blocks,n_blocks);
    for i = 1:n_blocks
        H{i,i} = schms{i}.H;
    end

    %% Total system matrix

    % Differentiation terms
    D = cell(n_blocks,n_blocks);
    for i = 1:n_blocks
        D{i,i} = schms{i}.D;
    end

    % Boundary penalty terms
    for i = 1:n_blocks
        if ~isstruct(bound{i})
            continue
        end

        fn = fieldnames(bound{i});
        for j = 1:length(fn);
            bc = bound{i}.(fn{j});
            if isempty(bc)
                continue
            end

            t = schms{i}.boundary_condition(fn{j},bc{:});
            D{i,i} = D{i,i}+t;
        end
    end

    % Interface penalty terms
    for i = 1:n_blocks
        for j = 1:n_blocks
            intf = conn{i,j};
            if isempty(intf)
                continue
            end

            [uu,uv,vv,vu] = schms{i}.interface_coupling(schms{i},intf{1},schms{j},intf{2});
            D{i,i} = D{i,i} + uu;
            D{i,j} = uv;
            D{j,j} = D{j,j} + vv;
            D{j,i} = vu;
        end
    end
end