Mercurial > repos > public > sbplib
view +grid/old/curve_discretise.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 48b6fb693025 |
children |
line wrap: on
line source
% Discretises the curve g with the smallest number of points such that all segments % are shorter than h. If do_plot is true the points of the discretisation and % the normals of the curve in those points are plotted. % % [t,p,d] = curve_discretise(g,h,do_plot) % % t is a vector of input values to g. % p is a cector of points. % d are the length of the segments. function [t,p,d] = curve_discretise(g,h,do_plot) default_arg('do_plot',false) n = 10; [t,p,d] = curve_discretise_n(g,n); % ni = 0; while any(d>h) [t,p,d] = curve_discretise_n(g,n); n = ceil(n*d(1)/h); % ni = ni+1; end % nj = 0; while all(d<h) [t,p,d] = curve_discretise_n(g,n); n = n-1; % nj = nj+1; end [t,p,d] = curve_discretise_n(g,n+1); % fprintf('ni = %d, nj = %d\n',ni,nj); if do_plot fprintf('n:%d max: %f min: %f\n', n, max(d),min(d)); p = grid.map_curve(g,t); figure show(g,t,h); end end function [t,p,d] = curve_discretise_n(g,n) t = linspace(0,1,n); t = equalize_d(g,t); d = D(g,t); p = grid.map_curve(g,t); end function d = D(g,t) p = grid.map_curve(g,t); d = zeros(1,length(t)-1); for i = 1:length(d) d(i) = norm(p(:,i) - p(:,i+1)); end end function t = equalize_d(g,t) d = D(g,t); v = d-mean(d); while any(abs(v)>0.01*mean(d)) dt = t(2:end)-t(1:end-1); t(2:end) = t(2:end) - cumsum(dt.*v./d); t = t/t(end); d = D(g,t); v = d-mean(d); end end function show(g,t,hh) p = grid.map_curve(g,t); h = grid.plot_curve(g); h.LineWidth = 2; axis equal hold on h = plot(p(1,:),p(2,:),'.'); h.Color = [0.8500 0.3250 0.0980]; h.MarkerSize = 24; hold off n = grid.curve_normals(g,t); hold on for i = 1:length(t) p0 = p(:,i); p1 = p0 + hh*n(:,i); l = [p0, p1]; h = plot(l(1,:),l(2,:)); h.Color = [0.8500 0.3250 0.0980]; end end