view +grid/Ti.m @ 87:0a29a60e0b21

In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author Martin Almquist <martin.almquist@it.uu.se>
date Sun, 29 Nov 2015 22:23:09 +0100
parents 48b6fb693025
children 145b3b8c1e4e
line wrap: on
line source

classdef Ti
    properties
        gs % {4}Curve
        S  % FunctionHandle(u,v)
    end

    methods
        % TODO function to label boundary names.
        %  function to find largest and smallest delta h in the grid. Maybe shouldnt live here
        function obj = Ti(C1,C2,C3,C4)
            obj.gs = {C1,C2,C3,C4};

            g1 = C1.g;
            g2 = C2.g;
            g3 = C3.g;
            g4 = C4.g;

            A = g1(0);
            B = g2(0);
            C = g3(0);
            D = g4(0);

            function o = S_fun(u,v)
                x1 = g1(u);
                x2 = g2(v);
                x3 = g3(1-u);
                x4 = g4(1-v);
                o1 = (1-v).*x1(1,:) + u.*x2(1,:) + v.*x3(1,:) + (1-u).*x4(1,:) ...
                    -((1-u)*(1-v).*A(1,:) + u*(1-v).*B(1,:) + u*v.*C(1,:) + (1-u)*v.*D(1,:));
                o2 = (1-v).*x1(2,:) + u.*x2(2,:) + v.*x3(2,:) + (1-u).*x4(2,:) ...
                    -((1-u)*(1-v).*A(2,:) + u*(1-v).*B(2,:) + u*v.*C(2,:) + (1-u)*v.*D(2,:));

                o = [o1;o2];
            end

            obj.S = @S_fun;
        end

        function [X,Y] = map(obj,u,v)
            default_arg('v',u);

            if isscalar(u)
                u = linspace(0,1,u);
            end

            if isscalar(v)
                v = linspace(0,1,v);
            end

            S = obj.S;

            nu = length(u);
            nv = length(v);

            X = zeros(nv,nu);
            Y = zeros(nv,nu);

            u = rowVector(u);
            v = rowVector(v);

            for i = 1:nv
                p = S(u,v(i));
                X(i,:) = p(1,:);
                Y(i,:) = p(2,:);
            end
        end

        function h = plot(obj,nu,nv)
            S = obj.S;

            default_arg('nv',nu)

            u = linspace(0,1,nu);
            v = linspace(0,1,nv);

            m = 100;

            X = zeros(nu+nv,m);
            Y = zeros(nu+nv,m);


            t = linspace(0,1,m);
            for i = 1:nu
                p = S(u(i),t);
                X(i,:) = p(1,:);
                Y(i,:) = p(2,:);
            end

            for i = 1:nv
                p = S(t,v(i));
                X(i+nu,:) = p(1,:);
                Y(i+nu,:) = p(2,:);
            end

            h = line(X',Y');
        end


        function h = show(obj,nu,nv)
            default_arg('nv',nu)
            S = obj.S;

            if(nu>2 || nv>2)
                h_grid = obj.plot(nu,nv);
                set(h_grid,'Color',[0 0.4470 0.7410]);
            end

            h_bord = obj.plot(2,2);
            set(h_bord,'Color',[0.8500 0.3250 0.0980]);
            set(h_bord,'LineWidth',2);
        end


        % TRANSFORMATIONS
        function ti = translate(obj,a)
            gs = obj.gs;

            for i = 1:length(gs)
                new_gs{i} = gs{i}.translate(a);
            end

            ti = grid.Ti(new_gs{:});
        end

        % Mirrors the Ti so that the resulting Ti is still left handed.
        %  (Corrected by reversing curves and switching e and w)
        function ti = mirror(obj, a, b)
            gs = obj.gs;

            new_gs = cell(1,4);

            new_gs{1} = gs{1}.mirror(a,b).reverse();
            new_gs{3} = gs{3}.mirror(a,b).reverse();
            new_gs{2} = gs{4}.mirror(a,b).reverse();
            new_gs{4} = gs{2}.mirror(a,b).reverse();

            ti = grid.Ti(new_gs{:});
        end

        function ti = rotate(obj,a,rad)
            gs = obj.gs;

            for i = 1:length(gs)
                new_gs{i} = gs{i}.rotate(a,rad);
            end

            ti = grid.Ti(new_gs{:});
        end

        function ti = rotate_edges(obj,n);
            new_gs = cell(1,4);
            for i = 0:3
                new_i = mod(i - n,4);
                new_gs{new_i+1} = obj.gs{i+1};
            end
            ti = grid.Ti(new_gs{:});
        end
    end

    methods(Static)
        function obj = points(p1, p2, p3, p4)
            g1 = grid.Curve.line(p1,p2);
            g2 = grid.Curve.line(p2,p3);
            g3 = grid.Curve.line(p3,p4);
            g4 = grid.Curve.line(p4,p1);

            obj = grid.Ti(g1,g2,g3,g4);
        end

        function label(varargin)
            if nargin == 2 && ischar(varargin{2})
                label_impl(varargin{:});
            else
                for i = 1:length(varargin)
                    label_impl(varargin{i},inputname(i));
                end
            end


            function label_impl(ti,str)
                S = ti.S;

                pc = S(0.5,0.5);

                margin = 0.1;
                pw = S(  margin,      0.5);
                pe = S(1-margin,      0.5);
                ps = S(     0.5,   margin);
                pn = S(     0.5, 1-margin);


                ti.show(2,2);
                grid.place_label(pc,str);
                grid.place_label(pw,'w');
                grid.place_label(pe,'e');
                grid.place_label(ps,'s');
                grid.place_label(pn,'n');
            end
        end
    end
end