Mercurial > repos > public > sbplib
view +grid/Ti.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 48b6fb693025 |
children | 145b3b8c1e4e |
line wrap: on
line source
classdef Ti properties gs % {4}Curve S % FunctionHandle(u,v) end methods % TODO function to label boundary names. % function to find largest and smallest delta h in the grid. Maybe shouldnt live here function obj = Ti(C1,C2,C3,C4) obj.gs = {C1,C2,C3,C4}; g1 = C1.g; g2 = C2.g; g3 = C3.g; g4 = C4.g; A = g1(0); B = g2(0); C = g3(0); D = g4(0); function o = S_fun(u,v) x1 = g1(u); x2 = g2(v); x3 = g3(1-u); x4 = g4(1-v); o1 = (1-v).*x1(1,:) + u.*x2(1,:) + v.*x3(1,:) + (1-u).*x4(1,:) ... -((1-u)*(1-v).*A(1,:) + u*(1-v).*B(1,:) + u*v.*C(1,:) + (1-u)*v.*D(1,:)); o2 = (1-v).*x1(2,:) + u.*x2(2,:) + v.*x3(2,:) + (1-u).*x4(2,:) ... -((1-u)*(1-v).*A(2,:) + u*(1-v).*B(2,:) + u*v.*C(2,:) + (1-u)*v.*D(2,:)); o = [o1;o2]; end obj.S = @S_fun; end function [X,Y] = map(obj,u,v) default_arg('v',u); if isscalar(u) u = linspace(0,1,u); end if isscalar(v) v = linspace(0,1,v); end S = obj.S; nu = length(u); nv = length(v); X = zeros(nv,nu); Y = zeros(nv,nu); u = rowVector(u); v = rowVector(v); for i = 1:nv p = S(u,v(i)); X(i,:) = p(1,:); Y(i,:) = p(2,:); end end function h = plot(obj,nu,nv) S = obj.S; default_arg('nv',nu) u = linspace(0,1,nu); v = linspace(0,1,nv); m = 100; X = zeros(nu+nv,m); Y = zeros(nu+nv,m); t = linspace(0,1,m); for i = 1:nu p = S(u(i),t); X(i,:) = p(1,:); Y(i,:) = p(2,:); end for i = 1:nv p = S(t,v(i)); X(i+nu,:) = p(1,:); Y(i+nu,:) = p(2,:); end h = line(X',Y'); end function h = show(obj,nu,nv) default_arg('nv',nu) S = obj.S; if(nu>2 || nv>2) h_grid = obj.plot(nu,nv); set(h_grid,'Color',[0 0.4470 0.7410]); end h_bord = obj.plot(2,2); set(h_bord,'Color',[0.8500 0.3250 0.0980]); set(h_bord,'LineWidth',2); end % TRANSFORMATIONS function ti = translate(obj,a) gs = obj.gs; for i = 1:length(gs) new_gs{i} = gs{i}.translate(a); end ti = grid.Ti(new_gs{:}); end % Mirrors the Ti so that the resulting Ti is still left handed. % (Corrected by reversing curves and switching e and w) function ti = mirror(obj, a, b) gs = obj.gs; new_gs = cell(1,4); new_gs{1} = gs{1}.mirror(a,b).reverse(); new_gs{3} = gs{3}.mirror(a,b).reverse(); new_gs{2} = gs{4}.mirror(a,b).reverse(); new_gs{4} = gs{2}.mirror(a,b).reverse(); ti = grid.Ti(new_gs{:}); end function ti = rotate(obj,a,rad) gs = obj.gs; for i = 1:length(gs) new_gs{i} = gs{i}.rotate(a,rad); end ti = grid.Ti(new_gs{:}); end function ti = rotate_edges(obj,n); new_gs = cell(1,4); for i = 0:3 new_i = mod(i - n,4); new_gs{new_i+1} = obj.gs{i+1}; end ti = grid.Ti(new_gs{:}); end end methods(Static) function obj = points(p1, p2, p3, p4) g1 = grid.Curve.line(p1,p2); g2 = grid.Curve.line(p2,p3); g3 = grid.Curve.line(p3,p4); g4 = grid.Curve.line(p4,p1); obj = grid.Ti(g1,g2,g3,g4); end function label(varargin) if nargin == 2 && ischar(varargin{2}) label_impl(varargin{:}); else for i = 1:length(varargin) label_impl(varargin{i},inputname(i)); end end function label_impl(ti,str) S = ti.S; pc = S(0.5,0.5); margin = 0.1; pw = S( margin, 0.5); pe = S(1-margin, 0.5); ps = S( 0.5, margin); pn = S( 0.5, 1-margin); ti.show(2,2); grid.place_label(pc,str); grid.place_label(pw,'w'); grid.place_label(pe,'e'); grid.place_label(ps,'s'); grid.place_label(pn,'n'); end end end end