Mercurial > repos > public > sbplib
view +grid/Curve.m @ 87:0a29a60e0b21
In Curve: Rearranged for speed. arc_length_fun is now a property of Curve. If it is not supplied, it is computed via the derivative and spline fitting. Switching to the arc length parameterization is much faster now. The new stuff can be tested with testArcLength.m (which should be deleted after that).
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Sun, 29 Nov 2015 22:23:09 +0100 |
parents | 3c39dd714fb6 |
children | b30f3d8845f4 |
line wrap: on
line source
classdef Curve properties g gp transformation arc_length_fun % arc_length_fun: % function handle. arc_length(s)=distance % between t=0 and t=s. end methods %TODO: % Errors or FD if there is no derivative function added. % -semi-done % Concatenation of curves % Subsections of curves % Stretching of curve paramter - semi-done % Curve to cell array of linesegments % Should supply either derivative or a difference operator D1 function obj = Curve(g,gp,transformation,D1,arc_length_fun) default_arg('gp',[]); default_arg('transformation',[]); default_arg('D1',[]); default_arg('arc_length_fun',[]); p_test = g(0); assert(all(size(p_test) == [2,1]), 'A curve parametrization must return a 2x1 vector.'); if(isempty(gp) && isempty(D1)); % Should be error instead of disp. disp(['You really should supply either the exact derivative ',... 'or a suitable difference operator to compute an approximation.']); elseif(isempty(gp)) gp = grid.Curve.numerical_derivative(g,D1); end if ~isempty(transformation) transformation.base_g = g; transformation.base_gp = gp; [g,gp] = grid.Curve.transform_g(g,gp,transformation); end if(isempty(arc_length_fun)) if(~isempty(D1)); N = length(D1); % Same accuracy as for deriv. else N = 101; % Best way to let user choose? end tvec = linspace(0,1,N); arc_vec = grid.Curve.arc_length(gp,0,tvec); arc_length_fun = grid.Curve.spline(tvec,arc_vec); end obj.g = g; obj.gp = gp; obj.transformation = transformation; obj.arc_length_fun = arc_length_fun; end % Made up length calculation!! Science this before actual use!! % Calculates the length of the curve. Makes sure the longet segment used is shorter than h_max. function [L,t] = curve_length(C,h_max) default_arg('h_max',0.001); g = C.g; h = 0.1; m = 1/h+1; t = linspace(0,1,m); [p,d] = get_d(t,g); while any(d>h_max) I = find(d>h_max); % plot(p(1,:),p(2,:),'.') % waitforbuttonpress new_t = []; for i = I new_t(end +1) = (t(i)+t(i+1))/2; end t = [t new_t]; t = sort(t); [p,d] = get_d(t,g); end L = sum(d); function [p,d] = get_d(t,g) n = length(t); p = zeros(2,n); for i = 1:n p(:,i) = g(t(i)); end d = zeros(1,n-1); for i = 1:n-1 d(i) = norm(p(:,i) - p(:,i+1)); end end end function n = normal(obj,t) deriv = obj.gp(t); normalization = sqrt(sum(deriv.^2,1)); n = [-deriv(2,:)./normalization; deriv(1,:)./normalization]; end % Plots a curve g(t) for 0<t<1, using n points. Returns a handle h to the plotted curve. % h = plot_curve(g,n) function h = plot(obj,n,marker) default_arg('n',100); default_arg('marker','line') t = linspace(0,1,n); p = obj.g(t); switch marker case 'line' h = line(p(1,:),p(2,:)); otherwise h = plot(p(1,:),p(2,:),marker); end end % Plots the derivative gp(t) for 0<t<1, using n points. Returns a handle h to the plotted curve. % h = plot_curve(gp,n) function h = plot_derivative(obj,n,marker) default_arg('n',100); default_arg('marker','line') t = linspace(0,1,n); p = obj.gp(t); switch marker case 'line' h = line(p(1,:),p(2,:)); otherwise h = plot(p(1,:),p(2,:),marker); end end function h= plot_normals(obj,l,n,m) default_arg('l',0.1); default_arg('n',10); default_arg('m',100); t_n = linspace(0,1,n); normals = obj.normal(t_n)*l; n0 = obj.g(t_n); n1 = n0 + normals; h = line([n0(1,:); n1(1,:)],[n0(2,:); n1(2,:)]); set(h,'Color',Color.red); obj.plot(m); end function h= show(obj,name) p = obj.g(1/2); n = obj.normal(1/2); p = p + n*0.1; % Add arrow h = text(p(1),p(2),name); h.HorizontalAlignment = 'center'; h.VerticalAlignment = 'middle'; obj.plot(); end % Shows curve with name and arrow for direction. function curve = stretch_parameter(obj,type) default_arg('type','arc_length'); switch type % Arc length parameterization. case 'arc_length' arcLength = obj.arc_length_fun; arcPar = @(t) util.fzero_vec(@(s)arcLength(s) - t*arcLength(1),[0-10*eps,1+10*eps]); g_new = @(t)obj.g(arcPar(t)); gp_old = obj.gp; gp_new = @(t) normalize(gp_old(arcPar(t))); arc_len_new = @(t) t; curve = grid.Curve(g_new,gp_new,[],[],arc_len_new); otherwise error('That stretching is not implemented.'); end end % how to make it work for methods without returns function p = subsref(obj,S) %Should i add error checking here? %Maybe if you want performance you fetch obj.g and then use that switch S(1).type case '()' p = obj.g(S.subs{1}); % case '.' % p = obj.(S.subs); otherwise p = builtin('subsref',obj,S); % error() end end %% TRANSFORMATION OF A CURVE function D = reverse(C) % g = C.g; % gp = C.gp; % D = grid.Curve(@(t)g(1-t),@(t)-gp(1-t)); D = C.transform([],[],-1); end function D = transform(C,A,b,flip) default_arg('A',[1 0; 0 1]); default_arg('b',[0; 0]); default_arg('flip',1); if isempty(C.transformation) g = C.g; gp = C.gp; transformation.A = A; transformation.b = b; transformation.flip = flip; else g = C.transformation.base_g; gp = C.transformation.base_gp; A_old = C.transformation.A; b_old = C.transformation.b; flip_old = C.transformation.flip; transformation.A = A*A_old; transformation.b = A*b_old + b; transformation.flip = flip*flip_old; end D = grid.Curve(g,gp,transformation); end function D = translate(C,a) g = C.g; gp = C.gp; % function v = g_fun(t) % x = g(t); % v(1,:) = x(1,:)+a(1); % v(2,:) = x(2,:)+a(2); % end % D = grid.Curve(@g_fun,gp); D = C.transform([],a); end function D = mirror(C, a, b) assert_size(a,[2,1]); assert_size(b,[2,1]); g = C.g; gp = C.gp; l = b-a; lx = l(1); ly = l(2); % fprintf('Singular?\n') A = [lx^2-ly^2 2*lx*ly; 2*lx*ly ly^2-lx^2]/(l'*l); % function v = g_fun(t) % % v = a + A*(g(t)-a) % x = g(t); % ax1 = x(1,:)-a(1); % ax2 = x(2,:)-a(2); % v(1,:) = a(1)+A(1,:)*[ax1;ax2]; % v(2,:) = a(2)+A(2,:)*[ax1;ax2]; % end % function v = gp_fun(t) % v = A*gp(t); % end % D = grid.Curve(@g_fun,@gp_fun); % g = A(g-a)+a = Ag - Aa + a; b = - A*a + a; D = C.transform(A,b); end function D = rotate(C,a,rad) assert_size(a, [2,1]); assert_size(rad, [1,1]); g = C.g; gp = C.gp; A = [cos(rad) -sin(rad); sin(rad) cos(rad)]; % function v = g_fun(t) % % v = a + A*(g(t)-a) % x = g(t); % ax1 = x(1,:)-a(1); % ax2 = x(2,:)-a(2); % v(1,:) = a(1)+A(1,:)*[ax1;ax2]; % v(2,:) = a(2)+A(2,:)*[ax1;ax2]; % end % function v = gp_fun(t) % v = A*gp(t); % end % D = grid.Curve(@g_fun,@gp_fun); % g = A(g-a)+a = Ag - Aa + a; b = - A*a + a; D = C.transform(A,b); end end methods (Static) % Length of arc from parameter t0 to t1 (which may be vectors). % Computed using derivative. function L = arc_length(deriv,t0,t1) speed = @(t) sp(deriv(t)); function s = sp(deriv) s = sqrt(sum(deriv.^2,1)); end L = util.integral_vec(speed,t0,t1); end function gp_out = numerical_derivative(g,D1) m = length(D1); L = 1; % Assume curve parameter from 0 to 1. t = linspace(0,L,m); g = g(t)'; gp = (D1*g)'; gp1_fun = grid.Curve.spline(t,gp(1,:)); gp2_fun = grid.Curve.spline(t,gp(2,:)); gp_out = @(t) [gp1_fun(t);gp2_fun(t)]; end % Returns a function handle to the spline. function f = spline(tval,fval,spline_order) default_arg('spline_order',4); [m,~] = size(tval); assert(m==1,'Need row vectors.'); % make vectors longer to be safe slightly beyond edges. dt0 = tval(2)-tval(1); dt1 = tval(end)-tval(end-1); df0 = fval(2)-fval(1); df1 = fval(end)-fval(end-1); tval = [tval(1)-dt0, tval, tval(end)+dt1]; fval = [fval(1)-df0, fval, fval(end)+df1]; f_spline = spapi( optknt(tval,spline_order), tval, fval ); f = @(t) fnval(f_spline,t); end function obj = line(p1, p2) function v = g_fun(t) v(1,:) = p1(1) + t.*(p2(1)-p1(1)); v(2,:) = p1(2) + t.*(p2(2)-p1(2)); end g = @g_fun; obj = grid.Curve(g); end function obj = circle(c,r,phi) default_arg('phi',[0; 2*pi]) default_arg('c',[0; 0]) default_arg('r',1) function v = g_fun(t) w = phi(1)+t*(phi(2)-phi(1)); v(1,:) = c(1) + r*cos(w); v(2,:) = c(2) + r*sin(w); end function v = g_fun_deriv(t) w = phi(1)+t*(phi(2)-phi(1)); v(1,:) = -(phi(2)-phi(1))*r*sin(w); v(2,:) = (phi(2)-phi(1))*r*cos(w); end obj = grid.Curve(@g_fun,@g_fun_deriv); end function obj = bezier(p0, p1, p2, p3) function v = g_fun(t) v(1,:) = (1-t).^3*p0(1) + 3*(1-t).^2.*t*p1(1) + 3*(1-t).*t.^2*p2(1) + t.^3*p3(1); v(2,:) = (1-t).^3*p0(2) + 3*(1-t).^2.*t*p1(2) + 3*(1-t).*t.^2*p2(2) + t.^3*p3(2); end function v = g_fun_deriv(t) v(1,:) = 3*(1-t).^2*(p1(1)-p0(1)) + 6*(1-t).*t*(p2(1)-p1(1)) + 3*t.^2*(p3(1)-p2(1)); v(2,:) = 3*(1-t).^2*(p1(2)-p0(2)) + 6*(1-t).*t*(p2(2)-p1(2)) + 3*t.^2*(p3(2)-p2(2)); end obj = grid.Curve(@g_fun,@g_fun_deriv); end function [g_out,gp_out] = transform_g(g,gp,tr) A = tr.A; b = tr.b; flip = tr.flip; function v = g_fun_noflip(t) % v = A*g + b x = g(t); v(1,:) = A(1,:)*x+b(1); v(2,:) = A(2,:)*x+b(2); end function v = g_fun_flip(t) % v = A*g + b x = g(1-t); v(1,:) = A(1,:)*x+b(1); v(2,:) = A(2,:)*x+b(2); end switch flip case 1 g_out = @g_fun_noflip; gp_out = @(t)A*gp(t); case -1 g_out = @g_fun_flip; gp_out = @(t)-A*gp(1-t); end end end end function g_norm = normalize(g0) g1 = g0(1,:); g2 = g0(2,:); normalization = sqrt(sum(g0.^2,1)); g_norm = [g1./normalization; g2./normalization]; end