view +time/Rk4SecondOrderNonlin.m @ 984:0585a2ee7ee7 feature/timesteppers

Inline the rk.rungekutta_4 function.
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 08 Jan 2019 12:19:33 +0100
parents f5e14e5986b5
children
line wrap: on
line source

classdef Rk4SecondOrderNonlin < time.Timestepper
    properties
        F
        k
        t
        w
        m

        D
        E
        S

        n
    end


    methods
        function obj = Rk4SecondOrderNonlin(D, E, S, k, t0, v0, v0t)
            default_arg('S',0);
            default_arg('E',0);

            if isnumeric(S)
                S = @(v,t)S;
            end

            if isnumeric(E)
                E = @(v)E;
            end

            obj.k = k;
            obj.t = t0;
            obj.w = [v0; v0t];

            m = length(v0);
            function wt = F(w,t)
                v  = w(1:m);
                vt = w(m+1:end);

                % Def: w = [v; vt]
                wt(1:m,1) = vt;
                wt(m+1:2*m,1) = D(v)*v + E(v)*vt + S(v,t);

            end

            obj.F = @F;
            obj.D = D;
            obj.E = E;
            obj.S = S;
            obj.m = m;
            obj.n = 0;
        end

        function [v,t] = getV(obj)
            v = obj.w(1:end/2);
            t = obj.t;
        end

        function [vt,t] = getVt(obj)
            vt = obj.w(end/2+1:end);
            t = obj.t;
        end

        function obj = step(obj)
            w = obj.w;
            k = obj.k;

            k1 = obj.F(t, w);
            k2 = obj.F(t + 0.5*k, w + 0.5*k*k1);
            k3 = obj.F(t + 0.5*k, w + 0.5*k*k2);
            k4 = obj.F(t + k, w + k*k3);

            obj.w = w + k*(1/6)*(k1+2*(k2+k3)+k4);
            obj.t = obj.t + obj.k;
            obj.n = obj.n + 1;
        end
    end


    methods (Static)
        function k = getTimeStep(lambda)
            k = rk4.get_rk4_time_step(lambda);
        end
    end

end