Mercurial > repos > public > sbplib
view +time/Rk4SecondOrderNonlin.m @ 984:0585a2ee7ee7 feature/timesteppers
Inline the rk.rungekutta_4 function.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 08 Jan 2019 12:19:33 +0100 |
parents | f5e14e5986b5 |
children |
line wrap: on
line source
classdef Rk4SecondOrderNonlin < time.Timestepper properties F k t w m D E S n end methods function obj = Rk4SecondOrderNonlin(D, E, S, k, t0, v0, v0t) default_arg('S',0); default_arg('E',0); if isnumeric(S) S = @(v,t)S; end if isnumeric(E) E = @(v)E; end obj.k = k; obj.t = t0; obj.w = [v0; v0t]; m = length(v0); function wt = F(w,t) v = w(1:m); vt = w(m+1:end); % Def: w = [v; vt] wt(1:m,1) = vt; wt(m+1:2*m,1) = D(v)*v + E(v)*vt + S(v,t); end obj.F = @F; obj.D = D; obj.E = E; obj.S = S; obj.m = m; obj.n = 0; end function [v,t] = getV(obj) v = obj.w(1:end/2); t = obj.t; end function [vt,t] = getVt(obj) vt = obj.w(end/2+1:end); t = obj.t; end function obj = step(obj) w = obj.w; k = obj.k; k1 = obj.F(t, w); k2 = obj.F(t + 0.5*k, w + 0.5*k*k1); k3 = obj.F(t + 0.5*k, w + 0.5*k*k2); k4 = obj.F(t + k, w + k*k3); obj.w = w + k*(1/6)*(k1+2*(k2+k3)+k4); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end methods (Static) function k = getTimeStep(lambda) k = rk4.get_rk4_time_step(lambda); end end end