Mercurial > repos > public > sbplib
view +scheme/Hypsyst3d.m @ 984:0585a2ee7ee7 feature/timesteppers
Inline the rk.rungekutta_4 function.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 08 Jan 2019 12:19:33 +0100 |
parents | 706d1c2b4199 |
children | 0652b34f9f27 |
line wrap: on
line source
classdef Hypsyst3d < scheme.Scheme properties m % Number of points in each direction, possibly a vector n % Size of system h % Grid spacing x, y, z % Grid X, Y, Z% Values of x and y for each grid point Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces order % Order accuracy for the approximation D % non-stabalized scheme operator A, B, C, E % Symbolic coefficient matrices Aevaluated,Bevaluated,Cevaluated, Eevaluated H % Discrete norm Hx, Hy, Hz % Norms in the x, y and z directions Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. I_x,I_y, I_z, I_N e_w, e_e, e_s, e_n, e_b, e_t params % Parameters for the coeficient matrice end methods % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Cu_z-Eu function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator) default_arg('E', []) xlim = lim{1}; ylim = lim{2}; zlim = lim{3}; if length(m) == 1 m = [m m m]; end obj.A = A; obj.B = B; obj.C = C; obj.E = E; m_x = m(1); m_y = m(2); m_z = m(3); obj.params = params; switch operator case 'upwind' ops_x = sbp.D1Upwind(m_x,xlim,order); ops_y = sbp.D1Upwind(m_y,ylim,order); ops_z = sbp.D1Upwind(m_z,zlim,order); otherwise ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); ops_z = sbp.D2Standard(m_z,zlim,order); end obj.x = ops_x.x; obj.y = ops_y.x; obj.z = ops_z.x; obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1)); obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); obj.Yx = kr(obj.y,ones(m_z,1)); obj.Zx = kr(ones(m_y,1),obj.z); obj.Xy = kr(obj.x,ones(m_z,1)); obj.Zy = kr(ones(m_x,1),obj.z); obj.Xz = kr(obj.x,ones(m_y,1)); obj.Yz = kr(ones(m_z,1),obj.y); obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); obj.n = length(A(obj.params,0,0,0)); I_n = speye(obj.n); I_x = speye(m_x); obj.I_x = I_x; I_y = speye(m_y); obj.I_y = I_y; I_z = speye(m_z); obj.I_z = I_z; I_N = kr(I_n,I_x,I_y,I_z); obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); obj.Hx = ops_x.H; obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); obj.Hy = ops_y.H; obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); obj.Hz = ops_z.H; obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); obj.m = m; obj.h = [ops_x.h ops_y.h ops_x.h]; obj.order = order; switch operator case 'upwind' alphaA = max(abs(eig(A(params,obj.x(end),obj.y(end),obj.z(end))))); alphaB = max(abs(eig(B(params,obj.x(end),obj.y(end),obj.z(end))))); alphaC = max(abs(eig(C(params,obj.x(end),obj.y(end),obj.z(end))))); Ap = (obj.Aevaluated+alphaA*I_N)/2; Am = (obj.Aevaluated-alphaA*I_N)/2; Dpx = kr(I_n, ops_x.Dp, I_y,I_z); Dmx = kr(I_n, ops_x.Dm, I_y,I_z); obj.D = -Am*Dpx; temp = Ap*Dmx; obj.D = obj.D-temp; clear Ap Am Dpx Dmx Bp = (obj.Bevaluated+alphaB*I_N)/2; Bm = (obj.Bevaluated-alphaB*I_N)/2; Dpy = kr(I_n, I_x, ops_y.Dp,I_z); Dmy = kr(I_n, I_x, ops_y.Dm,I_z); temp = Bm*Dpy; obj.D = obj.D-temp; temp = Bp*Dmy; obj.D = obj.D-temp; clear Bp Bm Dpy Dmy Cp = (obj.Cevaluated+alphaC*I_N)/2; Cm = (obj.Cevaluated-alphaC*I_N)/2; Dpz = kr(I_n, I_x, I_y,ops_z.Dp); Dmz = kr(I_n, I_x, I_y,ops_z.Dm); temp = Cm*Dpz; obj.D = obj.D-temp; temp = Cp*Dmz; obj.D = obj.D-temp; clear Cp Cm Dpz Dmz obj.D = obj.D-obj.Eevaluated; case 'standard' D1_x = kr(I_n, ops_x.D1, I_y,I_z); D1_y = kr(I_n, I_x, ops_y.D1,I_z); D1_z = kr(I_n, I_x, I_y,ops_z.D1); obj.D = -obj.Aevaluated*D1_x-obj.Bevaluated*D1_y-obj.Cevaluated*D1_z-obj.Eevaluated; otherwise error('Opperator not supported'); end end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. function [closure, penalty] = boundary_condition(obj,boundary,type,L) default_arg('type','char'); BM = boundary_matrices(obj,boundary); switch type case{'c','char'} [closure,penalty] = boundary_condition_char(obj,BM); case{'general'} [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); otherwise error('No such boundary condition') end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) error('Not implemented'); end function N = size(obj) N = obj.m; end function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) params = obj.params; side = max(length(X),length(Y)); if isa(mat,'function_handle') [rows,cols] = size(mat(params,0,0,0)); matVec = mat(params,X',Y',Z'); matVec = sparse(matVec); else matVec = mat; [rows,cols] = size(matVec); side = max(length(X),length(Y)); cols = cols/side; end ret = cell(rows,cols); for ii = 1:rows for jj = 1:cols ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); end end ret = cell2mat(ret); end function [BM] = boundary_matrices(obj,boundary) params = obj.params; switch boundary case {'w','W','west'} BM.e_ = obj.e_w; mat = obj.A; BM.boundpos = 'l'; BM.Hi = obj.Hxi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx); BM.side = length(obj.Yx); case {'e','E','east'} BM.e_ = obj.e_e; mat = obj.A; BM.boundpos = 'r'; BM.Hi = obj.Hxi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx); BM.side = length(obj.Yx); case {'s','S','south'} BM.e_ = obj.e_s; mat = obj.B; BM.boundpos = 'l'; BM.Hi = obj.Hyi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy); BM.side = length(obj.Xy); case {'n','N','north'} BM.e_ = obj.e_n; mat = obj.B; BM.boundpos = 'r'; BM.Hi = obj.Hyi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy); BM.side = length(obj.Xy); case{'b','B','Bottom'} BM.e_ = obj.e_b; mat = obj.C; BM.boundpos = 'l'; BM.Hi = obj.Hzi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1)); BM.side = length(obj.Xz); case{'t','T','Top'} BM.e_ = obj.e_t; mat = obj.C; BM.boundpos = 'r'; BM.Hi = obj.Hzi; [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end)); BM.side = length(obj.Xz); end BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); end % Characteristic bouyndary consitions function [closure, penalty]=boundary_condition_char(obj,BM) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval=BM.zeroval; V = BM.V; Vi = BM.Vi; Hi = BM.Hi; D = BM.D; e_ = BM.e_; switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); tau(1:pos,:) = -abs(D(1:pos,1:pos)); closure = Hi*e_*V*tau*Vi_plus*e_'; penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); closure = Hi*e_*V*tau*Vi_minus*e_'; penalty = -Hi*e_*V*tau*Vi_minus; end end % General boundary condition in the form Lu=g(x) function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) side = BM.side; pos = BM.pos; neg = BM.neg; zeroval=BM.zeroval; V = BM.V; Vi = BM.Vi; Hi = BM.Hi; D = BM.D; e_ = BM.e_; switch boundary case {'w','W','west'} L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); case {'e','E','east'} L = obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); case {'s','S','south'} L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); case {'n','N','north'} L = obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy);% General boundary condition in the form Lu=g(x) case {'b','B','bottom'} L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); case {'t','T','top'} L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); end switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); Vi_plus = Vi(1:pos,:); Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} tau = sparse(obj.n*side,neg); tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] % D = [ d0 ] % [ d-] % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) params = obj.params; syms xs ys zs [V, D] = eig(mat(params,xs,ys,zs)); Vi=inv(V); xs = x; ys = y; zs = z; side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); Viret= zeros(obj.n,side*obj.n); for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); V = obj.evaluateCoefficientMatrix(V,x,y,z); Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z); D = obj.evaluateCoefficientMatrix(D,x,y,z); DD = diag(D); poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end end end