Mercurial > repos > public > sbplib
view +scheme/Elastic2dCurvilinear.m @ 1033:037f203b9bf5 feature/burgers1d
Merge with branch feature/advectioRV to utilize the +rv package
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:44:12 +0100 |
parents | 1f6b2fb69225 |
children | cb4bfd0d81ea b8bd54332763 |
line wrap: on
line source
classdef Elastic2dCurvilinear < scheme.Scheme % Discretizes the elastic wave equation in curvilinear coordinates. % % Untransformed equation: % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i % % Transformed equation: % J*rho u_{i,tt} = dk J b_ik lambda b_jl dl u_j % + dk J b_jk mu b_il dl u_j % + dk J b_jk mu b_jl dl u_i % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. properties m % Number of points in each direction, possibly a vector h % Grid spacing grid dim order % Order of accuracy for the approximation % Diagonal matrices for varible coefficients LAMBDA % Variable coefficient, related to dilation MU % Shear modulus, variable coefficient RHO, RHOi % Density, variable % Metric coefficients b % Cell matrix of size dim x dim J, Ji beta % Cell array of scale factors D % Total operator D1 % First derivatives % Second derivatives D2_lambda D2_mu % Traction operators used for BC T_l, T_r tau_l, tau_r H, Hi % Inner products phi % Borrowing constant for (d1 - e^T*D1) from R gamma % Borrowing constant for d1 from M H11 % First element of H e_l, e_r d1_l, d1_r % Normal derivatives at the boundary E % E{i}^T picks out component i H_boundary_l, H_boundary_r % Boundary inner products % Kroneckered norms and coefficients RHOi_kron Ji_kron, J_kron Hi_kron, H_kron end methods function obj = Elastic2dCurvilinear(g ,order, lambda_fun, mu_fun, rho_fun, opSet) default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); default_arg('lambda_fun', @(x,y) 0*x+1); default_arg('mu_fun', @(x,y) 0*x+1); default_arg('rho_fun', @(x,y) 0*x+1); dim = 2; lambda = grid.evalOn(g, lambda_fun); mu = grid.evalOn(g, mu_fun); rho = grid.evalOn(g, rho_fun); m = g.size(); obj.m = m; m_tot = g.N(); % 1D operators ops = cell(dim,1); for i = 1:dim ops{i} = opSet{i}(m(i), {0, 1}, order); end % Borrowing constants for i = 1:dim beta = ops{i}.borrowing.R.delta_D; obj.H11{i} = ops{i}.borrowing.H11; obj.phi{i} = beta/obj.H11{i}; obj.gamma{i} = ops{i}.borrowing.M.d1; end I = cell(dim,1); D1 = cell(dim,1); D2 = cell(dim,1); H = cell(dim,1); Hi = cell(dim,1); e_l = cell(dim,1); e_r = cell(dim,1); d1_l = cell(dim,1); d1_r = cell(dim,1); for i = 1:dim I{i} = speye(m(i)); D1{i} = ops{i}.D1; D2{i} = ops{i}.D2; H{i} = ops{i}.H; Hi{i} = ops{i}.HI; e_l{i} = ops{i}.e_l; e_r{i} = ops{i}.e_r; d1_l{i} = ops{i}.d1_l; d1_r{i} = ops{i}.d1_r; end %====== Assemble full operators ======== % Variable coefficients LAMBDA = spdiag(lambda); obj.LAMBDA = LAMBDA; MU = spdiag(mu); obj.MU = MU; RHO = spdiag(rho); obj.RHO = RHO; obj.RHOi = inv(RHO); % Allocate obj.D1 = cell(dim,1); obj.D2_lambda = cell(dim,dim,dim); obj.D2_mu = cell(dim,dim,dim); obj.e_l = cell(dim,1); obj.e_r = cell(dim,1); obj.d1_l = cell(dim,1); obj.d1_r = cell(dim,1); % D1 obj.D1{1} = kron(D1{1},I{2}); obj.D1{2} = kron(I{1},D1{2}); % -- Metric coefficients ---- coords = g.points(); x = coords(:,1); y = coords(:,2); % Use non-periodic difference operators for metric even if opSet is periodic. xmax = max(ops{1}.x); ymax = max(ops{2}.x); opSetMetric{1} = sbp.D2Variable(m(1), {0, xmax}, order); opSetMetric{2} = sbp.D2Variable(m(2), {0, ymax}, order); D1Metric{1} = kron(opSetMetric{1}.D1, I{2}); D1Metric{2} = kron(I{1}, opSetMetric{2}.D1); x_xi = D1Metric{1}*x; x_eta = D1Metric{2}*x; y_xi = D1Metric{1}*y; y_eta = D1Metric{2}*y; J = x_xi.*y_eta - x_eta.*y_xi; b = cell(dim,dim); b{1,1} = y_eta./J; b{1,2} = -x_eta./J; b{2,1} = -y_xi./J; b{2,2} = x_xi./J; % Scale factors for boundary integrals beta = cell(dim,1); beta{1} = sqrt(x_eta.^2 + y_eta.^2); beta{2} = sqrt(x_xi.^2 + y_xi.^2); J = spdiag(J); Ji = inv(J); for i = 1:dim beta{i} = spdiag(beta{i}); for j = 1:dim b{i,j} = spdiag(b{i,j}); end end obj.J = J; obj.Ji = Ji; obj.b = b; obj.beta = beta; %---------------------------- % Boundary operators obj.e_l{1} = kron(e_l{1},I{2}); obj.e_l{2} = kron(I{1},e_l{2}); obj.e_r{1} = kron(e_r{1},I{2}); obj.e_r{2} = kron(I{1},e_r{2}); obj.d1_l{1} = kron(d1_l{1},I{2}); obj.d1_l{2} = kron(I{1},d1_l{2}); obj.d1_r{1} = kron(d1_r{1},I{2}); obj.d1_r{2} = kron(I{1},d1_r{2}); % D2 for i = 1:dim for j = 1:dim for k = 1:dim obj.D2_lambda{i,j,k} = sparse(m_tot); obj.D2_mu{i,j,k} = sparse(m_tot); end end end ind = grid.funcToMatrix(g, 1:m_tot); % x-dir for i = 1:dim for j = 1:dim for k = 1 coeff_lambda = J*b{i,k}*b{j,k}*lambda; coeff_mu = J*b{j,k}*b{i,k}*mu; for col = 1:m(2) D_lambda = D2{1}(coeff_lambda(ind(:,col))); D_mu = D2{1}(coeff_mu(ind(:,col))); p = ind(:,col); obj.D2_lambda{i,j,k}(p,p) = D_lambda; obj.D2_mu{i,j,k}(p,p) = D_mu; end end end end % y-dir for i = 1:dim for j = 1:dim for k = 2 coeff_lambda = J*b{i,k}*b{j,k}*lambda; coeff_mu = J*b{j,k}*b{i,k}*mu; for row = 1:m(1) D_lambda = D2{2}(coeff_lambda(ind(row,:))); D_mu = D2{2}(coeff_mu(ind(row,:))); p = ind(row,:); obj.D2_lambda{i,j,k}(p,p) = D_lambda; obj.D2_mu{i,j,k}(p,p) = D_mu; end end end end % Quadratures obj.H = kron(H{1},H{2}); obj.Hi = inv(obj.H); obj.H_boundary_l = cell(dim,1); obj.H_boundary_l{1} = obj.e_l{1}'*beta{1}*obj.e_l{1}*H{2}; obj.H_boundary_l{2} = obj.e_l{2}'*beta{2}*obj.e_l{2}*H{1}; obj.H_boundary_r = cell(dim,1); obj.H_boundary_r{1} = obj.e_r{1}'*beta{1}*obj.e_r{1}*H{2}; obj.H_boundary_r{2} = obj.e_r{2}'*beta{2}*obj.e_r{2}*H{1}; % E{i}^T picks out component i. E = cell(dim,1); I = speye(m_tot,m_tot); for i = 1:dim e = sparse(dim,1); e(i) = 1; E{i} = kron(I,e); end obj.E = E; % Differentiation matrix D (without SAT) D2_lambda = obj.D2_lambda; D2_mu = obj.D2_mu; D1 = obj.D1; D = sparse(dim*m_tot,dim*m_tot); d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta for i = 1:dim for j = 1:dim for k = 1:dim for l = 1:dim D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_lambda{i,j,k}*E{j}' + ... db(k,l)*D1{k}*J*b{i,k}*b{j,l}*LAMBDA*D1{l}*E{j}' ... ); D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{i,j,k}*E{j}' + ... db(k,l)*D1{k}*J*b{j,k}*b{i,l}*MU*D1{l}*E{j}' ... ); D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{j,j,k}*E{i}' + ... db(k,l)*D1{k}*J*b{j,k}*b{j,l}*MU*D1{l}*E{i}' ... ); end end end end obj.D = D; %=========================================% % Numerical traction operators for BC. % Because d1 =/= e0^T*D1, the numerical tractions are different % at every boundary. T_l = cell(dim,1); T_r = cell(dim,1); tau_l = cell(dim,1); tau_r = cell(dim,1); % tau^{j}_i = sum_k T^{j}_{ik} u_k d1_l = obj.d1_l; d1_r = obj.d1_r; e_l = obj.e_l; e_r = obj.e_r; % Loop over boundaries for j = 1:dim T_l{j} = cell(dim,dim); T_r{j} = cell(dim,dim); tau_l{j} = cell(dim,1); tau_r{j} = cell(dim,1); % Loop over components for i = 1:dim tau_l{j}{i} = sparse(m_tot,dim*m_tot); tau_r{j}{i} = sparse(m_tot,dim*m_tot); % Loop over components that T_{ik}^{(j)} acts on for k = 1:dim T_l{j}{i,k} = sparse(m_tot,m_tot); T_r{j}{i,k} = sparse(m_tot,m_tot); for m = 1:dim for l = 1:dim T_l{j}{i,k} = T_l{j}{i,k} + ... -d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ... -d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ... -d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}); T_r{j}{i,k} = T_r{j}{i,k} + ... d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ... d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ... d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}); end end T_l{j}{i,k} = inv(beta{j})*T_l{j}{i,k}; T_r{j}{i,k} = inv(beta{j})*T_r{j}{i,k}; tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; end end end obj.T_l = T_l; obj.T_r = T_r; obj.tau_l = tau_l; obj.tau_r = tau_r; % Kroneckered norms and coefficients I_dim = speye(dim); obj.RHOi_kron = kron(obj.RHOi, I_dim); obj.Ji_kron = kron(obj.Ji, I_dim); obj.Hi_kron = kron(obj.Hi, I_dim); obj.H_kron = kron(obj.H, I_dim); obj.J_kron = kron(obj.J, I_dim); % Misc. obj.h = g.scaling(); obj.order = order; obj.grid = g; obj.dim = dim; end % Closure functions return the operators applied to the own domain to close the boundary % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % bc is a cell array of component and bc type, e.g. {1, 'd'} for Dirichlet condition % on the first component. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj, boundary, bc, tuning) default_arg('tuning', 1.2); assert( iscell(bc), 'The BC type must be a 2x1 cell array' ); comp = bc{1}; type = bc{2}; % j is the coordinate direction of the boundary j = obj.get_boundary_number(boundary); [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); E = obj.E; Hi = obj.Hi; LAMBDA = obj.LAMBDA; MU = obj.MU; RHOi = obj.RHOi; Ji = obj.Ji; dim = obj.dim; m_tot = obj.grid.N(); % Preallocate closure = sparse(dim*m_tot, dim*m_tot); penalty = sparse(dim*m_tot, m_tot/obj.m(j)); % Loop over components that we (potentially) have different BC on k = comp; switch type % Dirichlet boundary condition case {'D','d','dirichlet','Dirichlet'} phi = obj.phi{j}; h = obj.h(j); h11 = obj.H11{j}*h; gamma = obj.gamma{j}; a_lambda = dim/h11 + 1/(h11*phi); a_mu_i = 2/(gamma*h); a_mu_ij = 2/h11 + 1/(h11*phi); d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... + d(i,j)* a_mu_i*MU ... + db(i,j)*a_mu_ij*MU ); % Loop over components that Dirichlet penalties end up on for i = 1:dim C = T{k,i}; A = -d(i,k)*alpha(i,j); B = A + C; closure = closure + E{i}*RHOi*Hi*Ji*B'*e*H_gamma*(e'*E{k}' ); penalty = penalty - E{i}*RHOi*Hi*Ji*B'*e*H_gamma; end % Free boundary condition case {'F','f','Free','free','traction','Traction','t','T'} closure = closure - E{k}*RHOi*Ji*Hi*e*H_gamma* (e'*tau{k} ); penalty = penalty + E{k}*RHOi*Ji*Hi*e*H_gamma; % Unknown boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain % Operators without subscripts are from the own domain. error('Not implemented'); tuning = 1.2; % j is the coordinate direction of the boundary j = obj.get_boundary_number(boundary); j_v = neighbour_scheme.get_boundary_number(neighbour_boundary); % Get boundary operators [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary); [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary); % Operators and quantities that correspond to the own domain only Hi = obj.Hi; RHOi = obj.RHOi; dim = obj.dim; %--- Other operators ---- m_tot_u = obj.grid.N(); E = obj.E; LAMBDA_u = obj.LAMBDA; MU_u = obj.MU; lambda_u = e'*LAMBDA_u*e; mu_u = e'*MU_u*e; m_tot_v = neighbour_scheme.grid.N(); E_v = neighbour_scheme.E; LAMBDA_v = neighbour_scheme.LAMBDA; MU_v = neighbour_scheme.MU; lambda_v = e_v'*LAMBDA_v*e_v; mu_v = e_v'*MU_v*e_v; %------------------------- % Borrowing constants phi_u = obj.phi{j}; h_u = obj.h(j); h11_u = obj.H11{j}*h_u; gamma_u = obj.gamma{j}; phi_v = neighbour_scheme.phi{j_v}; h_v = neighbour_scheme.h(j_v); h11_v = neighbour_scheme.H11{j_v}*h_v; gamma_v = neighbour_scheme.gamma{j_v}; % E > sum_i 1/(2*alpha_ij)*(tau_i)^2 function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) th1 = h11/(2*dim); th2 = h11*phi/2; th3 = h*gamma; a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3); a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3); alpha_ii = a1 + sqrt(a2 + a1^2); alpha_ij = mu*(2/h11 + 1/(phi*h11)); end [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u); [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v); sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4; sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4; d = @kroneckerDelta; % Kronecker delta db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij); % Preallocate closure = sparse(dim*m_tot_u, dim*m_tot_u); penalty = sparse(dim*m_tot_u, dim*m_tot_v); % Loop over components that penalties end up on for i = 1:dim closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}'; penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}'; closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i}; penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i}; % Loop over components that we have interface conditions on for k = 1:dim closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; end end end % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. function [j, nj] = get_boundary_number(obj, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end switch boundary case {'w','W','west','West','s','S','south','South'} nj = -1; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} nj = 1; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op: may be a cell array of strings function [varargout] = get_boundary_operator(obj, op, boundary) switch boundary case {'w','W','west','West', 'e', 'E', 'east', 'East'} j = 1; case {'s','S','south','South', 'n', 'N', 'north', 'North'} j = 2; otherwise error('No such boundary: boundary = %s',boundary); end if ~iscell(op) op = {op}; end for i = 1:length(op) switch op{i} case 'e' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.e_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.e_r{j}; end case 'd' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.d1_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.d1_r{j}; end case 'H' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.H_boundary_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.H_boundary_r{j}; end case 'T' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.T_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.T_r{j}; end case 'tau' switch boundary case {'w','W','west','West','s','S','south','South'} varargout{i} = obj.tau_l{j}; case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} varargout{i} = obj.tau_r{j}; end otherwise error(['No such operator: operator = ' op{i}]); end end end function N = size(obj) N = obj.dim*prod(obj.m); end end end