Mercurial > repos > public > sbplib
view +rv/constructDiffOps.m @ 1152:010bb2677230 feature/rv
Clean up in +rv/+time. Make the time stepping more efficient by not storing unnessecary properties in the RK-RV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:53:34 +0100 |
parents | 52f59d27b40f |
children | 3108963cc42c 0c906f7ab8bf |
line wrap: on
line source
function [D_rv, D_flux, DvDt, solutionPenalties, residualPenalties] = constructDiffOps(scheme, g, order, schemeParams, opSet, BCs) %% DiffOps for solution vector [D, solutionPenalties] = constructTotalFluxDiffOp(scheme, g, order, schemeParams, opSet, BCs); D2 = constructSymmetricD2Operator(g, order, opSet); D_rv = @(v,viscosity)(D(v) + D2(v, viscosity)); %% DiffOps for residual viscosity [D_flux, residualPenalties] = constructTotalFluxDiffOp(scheme, g, max(order-2,2), schemeParams, opSet, BCs); % DiffOp for flux in residual viscosity. Due to sign conventions of the implemnted schemes, we need to % change the sign. D_flux = @(v) -D_flux(v); % DiffOp for time derivative in residual viscosity DvDt = D; end function [D, penalties] = constructTotalFluxDiffOp(scheme, g, order, schemeParams, opSet, BCs) diffOp = scheme(g, order, schemeParams{:}, opSet); [D, penalties] = addClosuresToDiffOp(diffOp, BCs); end function [D, penalties] = addClosuresToDiffOp(diffOp, BCs) if ~isa(diffOp.D, 'function_handle') D = @(v) diffOp.D*v; else D = diffOp.D; end penalties = cell(size(BCs)); for i = 1:size(BCs,1) for j = 1:size(BCs,2) [closure, penalties{i,j}] = diffOp.boundary_condition(BCs{i,j}.boundary, BCs{i,j}.type); if ~isa(closure, 'function_handle') closure = @(v) closure*v; end D = @(v) D(v) + closure(v); end end end function D2 = constructSymmetricD2Operator(g, order, opSet) m = g.size(); ops = cell(g.D(),1); I = cell(g.D(),1); for i = 1:g.D() lim = {g.x{i}(1), g.x{i}(end)}; ops{i} = opSet(m(i), lim, order); I{i} = speye(m(i)); end % TBD: How is this generalized to a loop over dimensions or similar? switch g.D() case 1 e_r = ops{1}.e_r; e_l = ops{1}.e_l; Hi = ops{1}.HI; B = e_r*e_r' - e_l*e_l'; if isequal(opSet,@sbp.D1Upwind) Dm = ops{1}.Dm; Dp = ops{1}.Dp; D2 = @(viscosity) Dm*spdiag(viscosity)*Dp-Hi*(B*spdiag(viscosity)*Dp); else D2 = @(viscosity)ops{1}.D2(viscosity); end case 2 % TODO: % Currently only implemented for upwind operators. % Remove this part once the time-dependent D2 operator is implemented for other opSets % or if it is decided that it should only be supported for upwind operators. assert(isequal(opSet,@sbp.D1Upwind)) e_e = kron(ops{1}.e_r,I{2}); e_w = kron(ops{1}.e_l,I{2}); Dm_x = kron(ops{1}.Dm,I{2}); Dp_x = kron(ops{1}.Dp,I{2}); H_x = kron(ops{1}.HI,I{2}); B_x = e_e*e_e' - e_w*e_w'; D2_x = @(viscosity) Dm_x*spdiag(viscosity)*Dp_x-H_x*(B_x*spdiag(viscosity)*Dp_x); e_n = kron(I{1},ops{2}.e_r); e_s = kron(I{1},ops{2}.e_l); Dm_y = kron(I{1},ops{2}.Dm); Dp_y = kron(I{1},ops{2}.Dp); H_y = kron(I{1},ops{2}.HI); B_y = e_n*e_n' - e_s*e_s'; D2_y = @(viscosity) Dm_y*spdiag(viscosity)*Dp_y-H_y*(B_y*spdiag(viscosity)*Dp_y); D2 = @(viscosity)D2_x(viscosity) + D2_y(viscosity); otherwise error('3D not yet implemented') end D2 = @(v, viscosity) D2(viscosity)*v; end