Mercurial > repos > public > sbplib
view +grid/equidistant.m @ 835:008496ca38f3 feature/burgers1d
Compute the residual in between each runge-kutta stage.
Note: It is not clear whether the correct residual is used when computing the stages. Must investigate further.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 13 Sep 2018 18:14:54 +0200 |
parents | c3378418d49a |
children |
line wrap: on
line source
% Creates a cartesian grid of dimension length(m). % over the doman xlim, ylim, ... % Examples: % g = grid.equidistant([mx, my], xlim, ylim) % g = grid.equidistant([10, 15], {0,1}, {0,2}) function g = equidistant(m, varargin) if length(m) ~= length(varargin) error('grid:equidistant:NonMatchingParameters','The number of provided dimensions do not match.') end for i = 1:length(m) if ~iscell(varargin{i}) || numel(varargin{i}) ~= 2 error('grid:equidistant:InvalidLimits','The limits should be cell arrays with 2 elements.'); end if varargin{i}{1} > varargin{i}{2} error('grid:equidistant:InvalidLimits','The elements of the limit must be increasing.'); end end X = {}; h = []; for i = 1:length(m) [X{i}, h(i)] = util.get_grid(varargin{i}{:},m(i)); end g = grid.Cartesian(X{:}); g.h = h; end