diff +grid/Ti3D.m @ 349:cd6a29ab3746 feature/hypsyst

A 3D is added and an attempt to imlement 3D transfinit interpolation has been initialized
author Ylva Rydin <ylva.rydin@telia.com>
date Thu, 13 Oct 2016 09:34:30 +0200
parents
children 5d5652fe826a
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+grid/Ti3D.m	Thu Oct 13 09:34:30 2016 +0200
@@ -0,0 +1,252 @@
+classdef Ti3D
+    properties
+        gs % {6}Surfaces
+        V  % FunctionHandle(XI,ETA,ZETA)
+    end
+    
+    methods
+        % TODO function to label boundary names.
+        %  function to find largest and smallest delta h in the grid. Maybe shouldnt live here
+        function obj = Ti3D(CW,CE,CS,CN,CB,CT)
+            obj.gs = {CE,CW,CS,CN,CB,CT};
+            
+            gw = CW.g;
+            ge = CE.g;
+            gs = CS.g;
+            gn = CN.g;
+            gb = CB.g;
+            gt = CT.g;
+            
+            function o = V_fun(XI,ETA,ZETA)
+                XI=XI';
+                ETA=ETA';
+                ZETA=ZETA';
+                
+                one=0*ETA+1;
+                zero=0*ETA;
+                
+                Sw = gw((1-ETA),(1-ZETA));
+                Se = ge(ETA,ZETA);
+                Ss = gs(XI,(1-ZETA));
+                Sn = gn((1-XI),ZETA);
+                Sb = gb(XI,ETA);
+                St = gt((1-XI),(1-ETA));
+                
+                Ewt = gw(1-ETA,zero);
+                Ewb = gw(1-ETA,one);
+                Ews = gw(one,1-ZETA);
+                Ewn = gw(zero,1-ZETA);
+                Eet = ge(ETA,one);
+                Eeb = ge(ETA,zero);
+                Ees = ge(0*one,ZETA);
+                Een = ge(one,ZETA);
+                Enb = gn(1-XI,zero);
+                Ent = gn(1-XI,one);
+                Est = gs(XI,zero);
+                Esb = gs(XI,one);
+                
+                Cwbs = gw(one,one);
+                Cwbn = gw(zero,one);
+                Cwts = gw(one,zero);
+                Cwtn = gw(zero,zero);
+                Cebs = ge(zero,zero);
+                Cebn = ge(one,zero);
+                Cets = ge(zero,one);
+                Cetn = ge(one,one);
+                
+                
+                X1 = (1-XI).*Sw(1,:,:) + XI.*Se(1,:,:);
+                X2 = (1-ETA).*Ss(1,:,:) + ETA.*Sn(1,:,:);
+                X3 = (1-ZETA).*Sb(1,:,:) + ZETA.*St(1,:,:);
+                
+                X12 = (1-XI).*(1-ETA).*Ews(1,:,:) + (1-XI).*ETA.*Ewn(1,:,:) + XI.*(1-ETA).*Ees(1,:,:) + XI.*ETA.*Een(1,:,:);
+                X13 = (1-XI).*(1-ZETA).*Ewb(1,:,:) + (1-XI).*ZETA.*Ewt(1,:,:) + XI.*(1-ZETA).*Eeb(1,:,:) + XI.*ZETA.*Eet(1,:,:);
+                X23 = (1-ETA).*(1-ZETA).*Esb(1,:,:) + (1-ETA).*ZETA.*Est(1,:,:) + ETA.*(1-ZETA).*Enb(1,:,:) + ETA.*ZETA.*Ent(1,:,:);
+                
+                X123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(1,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(1,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(1,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(1,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(1,:,:) + XI.*(1-ETA).*ZETA.*Cets(1,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(1,:,:) + XI.*ETA.*ZETA.*Cetn(1,:,:);
+                
+                X = X1 + X2 + X3 - X12 - X13 - X23 + X123;
+                
+                
+                Y1 = (1-XI).*Sw(2,:,:) + XI.*Se(2,:,:);
+                Y2 = (1-ETA).*Ss(2,:,:) + ETA.*Sn(2,:,:);
+                Y3 = (1-ZETA).*Sb(2,:,:) + ZETA.*St(2,:,:);
+                
+                Y12 = (1-XI).*(1-ETA).*Ews(2,:,:) + (1-XI).*ETA.*Ewn(2,:,:) + XI.*(1-ETA).*Ees(2,:,:) + XI.*ETA.*Een(2,:,:);
+                Y13 = (1-XI).*(1-ZETA).*Ewb(2,:,:) + (1-XI).*ZETA.*Ewt(2,:,:) + XI.*(1-ZETA).*Eeb(2,:,:) + XI.*ZETA.*Eet(2,:,:);
+                Y23 = (1-ETA).*(1-ZETA).*Esb(2,:,:) + (1-ETA).*ZETA.*Est(2,:,:) + ETA.*(1-ZETA).*Enb(2,:,:) + ETA.*ZETA.*Ent(2,:,:);
+                
+                Y123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(2,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(2,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(2,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(2,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(2,:,:) + XI.*(1-ETA).*ZETA.*Cets(2,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(2,:,:) + XI.*ETA.*ZETA.*Cetn(2,:,:);
+                
+                Y = Y1 + Y2 + Y3 - Y12 - Y13 - Y23 + Y123;
+                
+                
+                Z1 = (1-XI).*Sw(3,:,:) + XI.*Se(3,:,:);
+                Z2 = (1-ETA).*Ss(3,:,:) + ETA.*Sn(3,:,:);
+                Z3 = (1-ZETA).*Sb(3,:,:) + ZETA.*St(3,:,:);
+                
+                Z12 = (1-XI).*(1-ETA).*Ews(3,:,:) + (1-XI).*ETA.*Ewn(3,:,:) + XI.*(1-ETA).*Ees(3,:,:) + XI.*ETA.*Een(3,:,:);
+                Z13 = (1-XI).*(1-ZETA).*Ewb(3,:,:) + (1-XI).*ZETA.*Ewt(3,:,:) + XI.*(1-ZETA).*Eeb(3,:,:) + XI.*ZETA.*Eet(3,:,:);
+                Z23 = (1-ETA).*(1-ZETA).*Esb(3,:,:) + (1-ETA).*ZETA.*Est(3,:,:) + ETA.*(1-ZETA).*Enb(3,:,:) + ETA.*ZETA.*Ent(3,:,:);
+                
+                Z123 = (1-XI).*(1-ETA).*(1-ZETA).*Cwbs(3,:,:) + (1-XI).*(1-ETA).*ZETA.*Cwts(3,:,:) + (1-XI).*ETA.*(1-ZETA).*Cwbn(3,:,:) + ...
+                    (1-XI).*ETA.*ZETA.*Cwtn(3,:,:) + XI.*(1-ETA).*(1-ZETA).*Cebs(3,:,:) + XI.*(1-ETA).*ZETA.*Cets(3,:,:) + ...
+                    XI.*ETA.*(1-ZETA).*Cebn(3,:,:) + XI.*ETA.*ZETA.*Cetn(3,:,:);
+                
+                Z = Z1 + Z2 + Z3 - Z12 - Z13 - Z23 + Z123;
+                o = [X;Y;Z];
+            end
+            
+            obj.V = @V_fun;
+        end
+        
+        
+        function [X,Y,Z] = map(obj,XI,ETA,ZETA)
+            
+            V = obj.V;
+            
+            p = V(XI,ETA,ZETA);
+            X = p(1,:)';
+            Y = p(2,:)';
+            Z = p(3,:)';
+            
+        end
+        
+        %         function h = plot(obj,nu,nv)
+        %             S = obj.S;
+        %
+        %             default_arg('nv',nu)
+        %
+        %             u = linspace(0,1,nu);
+        %             v = linspace(0,1,nv);
+        %
+        %             m = 100;
+        %
+        %             X = zeros(nu+nv,m);
+        %             Y = zeros(nu+nv,m);
+        %
+        %
+        %             t = linspace(0,1,m);
+        %             for i = 1:nu
+        %                 p = S(u(i),t);
+        %                 X(i,:) = p(1,:);
+        %                 Y(i,:) = p(2,:);
+        %             end
+        %
+        %             for i = 1:nv
+        %                 p = S(t,v(i));
+        %                 X(i+nu,:) = p(1,:);
+        %                 Y(i+nu,:) = p(2,:);
+        %             end
+        %
+        %             h = line(X',Y');
+        %         end
+        %
+        %
+        %         function h = show(obj,nu,nv)
+        %             default_arg('nv',nu)
+        %             S = obj.S;
+        %
+        %             if(nu>2 || nv>2)
+        %                 h_grid = obj.plot(nu,nv);
+        %                 set(h_grid,'Color',[0 0.4470 0.7410]);
+        %             end
+        %
+        %             h_bord = obj.plot(2,2);
+        %             set(h_bord,'Color',[0.8500 0.3250 0.0980]);
+        %             set(h_bord,'LineWidth',2);
+        %         end
+        %
+        %
+        %         % TRANSFORMATIONS
+        %         function ti = translate(obj,a)
+        %             gs = obj.gs;
+        %
+        %             for i = 1:length(gs)
+        %                 new_gs{i} = gs{i}.translate(a);
+        %             end
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         % Mirrors the Ti so that the resulting Ti is still left handed.
+        %         %  (Corrected by reversing curves and switching e and w)
+        %         function ti = mirror(obj, a, b)
+        %             gs = obj.gs;
+        %
+        %             new_gs = cell(1,4);
+        %
+        %             new_gs{1} = gs{1}.mirror(a,b).reverse();
+        %             new_gs{3} = gs{3}.mirror(a,b).reverse();
+        %             new_gs{2} = gs{4}.mirror(a,b).reverse();
+        %             new_gs{4} = gs{2}.mirror(a,b).reverse();
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         function ti = rotate(obj,a,rad)
+        %             gs = obj.gs;
+        %
+        %             for i = 1:length(gs)
+        %                 new_gs{i} = gs{i}.rotate(a,rad);
+        %             end
+        %
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %
+        %         function ti = rotate_edges(obj,n);
+        %             new_gs = cell(1,4);
+        %             for i = 0:3
+        %                 new_i = mod(i - n,4);
+        %                 new_gs{new_i+1} = obj.gs{i+1};
+        %             end
+        %             ti = grid.Ti(new_gs{:});
+        %         end
+        %     end
+        %
+        %     methods(Static)
+        %         function obj = points(p1, p2, p3, p4)
+        %             g1 = grid.Curve.line(p1,p2);
+        %             g2 = grid.Curve.line(p2,p3);
+        %             g3 = grid.Curve.line(p3,p4);
+        %             g4 = grid.Curve.line(p4,p1);
+        %
+        %             obj = grid.Ti(g1,g2,g3,g4);
+        %         end
+        %
+        %         function label(varargin)
+        %             if nargin == 2 && ischar(varargin{2})
+        %                 label_impl(varargin{:});
+        %             else
+        %                 for i = 1:length(varargin)
+        %                     label_impl(varargin{i},inputname(i));
+        %                 end
+        %             end
+        %
+        %
+        %             function label_impl(ti,str)
+        %                 S = ti.S;
+        %
+        %                 pc = S(0.5,0.5);
+        %
+        %                 margin = 0.1;
+        %                 pw = S(  margin,      0.5);
+        %                 pe = S(1-margin,      0.5);
+        %                 ps = S(     0.5,   margin);
+        %                 pn = S(     0.5, 1-margin);
+        %
+        %
+        %                 ti.show(2,2);
+        %                 grid.place_label(pc,str);
+        %                 grid.place_label(pw,'w');
+        %                 grid.place_label(pe,'e');
+        %                 grid.place_label(ps,'s');
+        %                 grid.place_label(pn,'n');
+        %             end
+        %         end
+    end
+end
\ No newline at end of file