Mercurial > repos > public > sbplib
diff +scheme/Hypsyst3dCurve.m @ 423:a2cb0d4f4a02 feature/grids
Merge in default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Feb 2017 15:47:51 +0100 |
parents | 9d1fc984f40d |
children | feebfca90080 459eeb99130f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Hypsyst3dCurve.m Tue Feb 07 15:47:51 2017 +0100 @@ -0,0 +1,557 @@ +classdef Hypsyst3dCurve < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + n %size of system + h % Grid spacing + X, Y, Z% Values of x and y for each grid point + Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces + + xi,eta,zeta + Xi, Eta, Zeta + + Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta % Metric terms + X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms + + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices + Ahat, Bhat, Chat % Symbolic Transformed Coefficient matrices + A, B, C, E % Symbolic coeffiecient matrices + + J, Ji % JAcobian and inverse Jacobian + + H % Discrete norm + % Norms in the x, y and z directions + Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + Hxi,Heta,Hzeta + I_xi,I_eta,I_zeta, I_N,onesN + e_w, e_e, e_s, e_n, e_b, e_t + index_w, index_e,index_s,index_n, index_b, index_t + params %parameters for the coeficient matrice + end + + + methods + function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator) + xilim ={0 1}; + etalim = {0 1}; + zetalim = {0 1}; + + if length(m) == 1 + m = [m m m]; + end + m_xi = m(1); + m_eta = m(2); + m_zeta = m(3); + m_tot = m_xi*m_eta*m_zeta; + obj.params = params; + obj.n = length(A(obj,0,0,0)); + + obj.m = m; + obj.order = order; + obj.onesN = ones(obj.n); + + switch operator + case 'upwind' + ops_xi = sbp.D1Upwind(m_xi,xilim,order); + ops_eta = sbp.D1Upwind(m_eta,etalim,order); + ops_zeta = sbp.D1Upwind(m_zeta,zetalim,order); + case 'standard' + ops_xi = sbp.D2Standard(m_xi,xilim,order); + ops_eta = sbp.D2Standard(m_eta,etalim,order); + ops_zeta = sbp.D2Standard(m_zeta,zetalim,order); + otherwise + error('Operator not available') + end + + obj.xi = ops_xi.x; + obj.eta = ops_eta.x; + obj.zeta = ops_zeta.x; + + obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1)); + obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1)); + obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta); + + + [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta); + obj.X = X; + obj.Y = Y; + obj.Z = Z; + + I_n = eye(obj.n); + I_xi = speye(m_xi); + obj.I_xi = I_xi; + I_eta = speye(m_eta); + obj.I_eta = I_eta; + I_zeta = speye(m_zeta); + obj.I_zeta = I_zeta; + + I_N=kr(I_n,I_xi,I_eta,I_zeta); + + O_xi = ones(m_xi,1); + O_eta = ones(m_eta,1); + O_zeta = ones(m_zeta,1); + + + obj.Hxi = ops_xi.H; + obj.Heta = ops_eta.H; + obj.Hzeta = ops_zeta.H; + obj.h = [ops_xi.h ops_eta.h ops_zeta.h]; + + switch operator + case 'upwind' + D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta); + D1_eta = kr(I_xi, (ops_eta.Dp+ops_eta.Dm)/2,I_zeta); + D1_zeta = kr(I_xi, I_eta,(ops_zeta.Dp+ops_zeta.Dm)/2); + otherwise + D1_xi = kr(ops_xi.D1, I_eta,I_zeta); + D1_eta = kr(I_xi, ops_eta.D1,I_zeta); + D1_zeta = kr(I_xi, I_eta,ops_zeta.D1); + end + + obj.A = A; + obj.B = B; + obj.C = C; + + obj.X_xi = D1_xi*X; + obj.X_eta = D1_eta*X; + obj.X_zeta = D1_zeta*X; + obj.Y_xi = D1_xi*Y; + obj.Y_eta = D1_eta*Y; + obj.Y_zeta = D1_zeta*Y; + obj.Z_xi = D1_xi*Z; + obj.Z_eta = D1_eta*Z; + obj.Z_zeta = D1_zeta*Z; + + obj.Ahat = @transform_coefficient_matrix; + obj.Bhat = @transform_coefficient_matrix; + obj.Chat = @transform_coefficient_matrix; + obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z); + + obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta); + obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi); + obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta); + + switch operator + case 'upwind' + clear D1_xi D1_eta D1_zeta + alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end))))); + alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end))))); + alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end))))); + + Ap = (obj.Aevaluated+alphaA*I_N)/2; + Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta); + diffSum = -Ap*Dmxi; + clear Ap Dmxi + + Am = (obj.Aevaluated-alphaA*I_N)/2; + + obj.Aevaluated = []; + Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta); + temp = Am*Dpxi; + diffSum = diffSum-temp; + clear Am Dpxi + + Bp = (obj.Bevaluated+alphaB*I_N)/2; + Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta); + temp = Bp*Dmeta; + diffSum = diffSum-temp; + clear Bp Dmeta + + Bm = (obj.Bevaluated-alphaB*I_N)/2; + obj.Bevaluated = []; + Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta); + temp = Bm*Dpeta; + diffSum = diffSum-temp; + clear Bm Dpeta + + Cp = (obj.Cevaluated+alphaC*I_N)/2; + Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm); + temp = Cp*Dmzeta; + diffSum = diffSum-temp; + clear Cp Dmzeta + + Cm = (obj.Cevaluated-alphaC*I_N)/2; + clear I_N + obj.Cevaluated = []; + Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp); + temp = Cm*Dpzeta; + diffSum = diffSum-temp; + clear Cm Dpzeta temp + + obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... + +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... + +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... + -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... + -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... + -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; + + obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); + obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); + + obj.D = obj.Ji*diffSum-obj.Eevaluated; + + case 'standard' + D1_xi = kr(I_n,D1_xi); + D1_eta = kr(I_n,D1_eta); + D1_zeta = kr(I_n,D1_zeta); + + obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... + +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... + +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... + -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... + -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... + -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; + + obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); + obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); + + obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated; + otherwise + error('Operator not supported') + end + + obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta); + obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta); + obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI); + + obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1); + obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1); + obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1); + obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1); + obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1); + obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1); + + obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta); + obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta); + obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta); + obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta); + obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l); + obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r); + + obj.Eta_xi = kr(obj.eta,ones(m_xi,1)); + obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta); + obj.Xi_eta = kr(obj.xi,ones(m_zeta,1)); + obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta); + obj.Xi_zeta = kr(obj.xi,ones(m_eta,1)); + obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta); + end + + function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) + ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2); + ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2); + ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1); + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,L) + default_arg('type','char'); + BM = boundary_matrices(obj,boundary); + + switch type + case{'c','char'} + [closure,penalty] = boundary_condition_char(obj,BM); + case{'general'} + [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); + otherwise + error('No such boundary condition') + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.m; + end + + % Evaluates the symbolic Coeffiecient matrix mat + function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2) + params = obj.params; + side = max(length(X),length(Y)); + if isa(mat,'function_handle') + [rows,cols] = size(mat(obj,0,0,0,0,0,0,0,0,0)); + x_1 = kr(obj.onesN,x_1); + x_2 = kr(obj.onesN,x_2); + y_1 = kr(obj.onesN,y_1); + y_2 = kr(obj.onesN,y_2); + z_1 = kr(obj.onesN,z_1); + z_2 = kr(obj.onesN,z_2); + matVec = mat(obj,X',Y',Z',x_1',x_2',y_1',y_2',z_1',z_2'); + matVec = sparse(matVec); + else + matVec = mat; + [rows,cols] = size(matVec); + side = max(length(X),length(Y)); + cols = cols/side; + end + matVec(abs(matVec)<10^(-10)) = 0; + ret = cell(rows,cols); + + for ii = 1:rows + for jj = 1:cols + ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); + end + end + ret = cell2mat(ret); + end + + function [BM] = boundary_matrices(obj,boundary) + params = obj.params; + BM.boundary = boundary; + switch boundary + case {'w','W','west'} + BM.e_ = obj.e_w; + mat = obj.Ahat; + BM.boundpos = 'l'; + BM.Hi = obj.Hxii; + BM.index = obj.index_w; + BM.x_1 = obj.X_eta(BM.index); + BM.x_2 = obj.X_zeta(BM.index); + BM.y_1 = obj.Y_eta(BM.index); + BM.y_2 = obj.Y_zeta(BM.index); + BM.z_1 = obj.Z_eta(BM.index); + BM.z_2 = obj.Z_zeta(BM.index); + case {'e','E','east'} + BM.e_ = obj.e_e; + mat = obj.Ahat; + BM.boundpos = 'r'; + BM.Hi = obj.Hxii; + BM.index = obj.index_e; + BM.x_1 = obj.X_eta(BM.index); + BM.x_2 = obj.X_zeta(BM.index); + BM.y_1 = obj.Y_eta(BM.index); + BM.y_2 = obj.Y_zeta(BM.index); + BM.z_1 = obj.Z_eta(BM.index); + BM.z_2 = obj.Z_zeta(BM.index); + case {'s','S','south'} + BM.e_ = obj.e_s; + mat = obj.Bhat; + BM.boundpos = 'l'; + BM.Hi = obj.Hetai; + BM.index = obj.index_s; + BM.x_1 = obj.X_zeta(BM.index); + BM.x_2 = obj.X_xi(BM.index); + BM.y_1 = obj.Y_zeta(BM.index); + BM.y_2 = obj.Y_xi(BM.index); + BM.z_1 = obj.Z_zeta(BM.index); + BM.z_2 = obj.Z_xi(BM.index); + case {'n','N','north'} + BM.e_ = obj.e_n; + mat = obj.Bhat; + BM.boundpos = 'r'; + BM.Hi = obj.Hetai; + BM.index = obj.index_n; + BM.x_1 = obj.X_zeta(BM.index); + BM.x_2 = obj.X_xi(BM.index); + BM.y_1 = obj.Y_zeta(BM.index); + BM.y_2 = obj.Y_xi(BM.index); + BM.z_1 = obj.Z_zeta(BM.index); + BM.z_2 = obj.Z_xi(BM.index); + case{'b','B','Bottom'} + BM.e_ = obj.e_b; + mat = obj.Chat; + BM.boundpos = 'l'; + BM.Hi = obj.Hzetai; + BM.index = obj.index_b; + BM.x_1 = obj.X_xi(BM.index); + BM.x_2 = obj.X_eta(BM.index); + BM.y_1 = obj.Y_xi(BM.index); + BM.y_2 = obj.Y_eta(BM.index); + BM.z_1 = obj.Z_xi(BM.index); + BM.z_2 = obj.Z_eta(BM.index); + case{'t','T','Top'} + BM.e_ = obj.e_t; + mat = obj.Chat; + BM.boundpos = 'r'; + BM.Hi = obj.Hzetai; + BM.index = obj.index_t; + BM.x_1 = obj.X_xi(BM.index); + BM.x_2 = obj.X_eta(BM.index); + BM.y_1 = obj.Y_xi(BM.index); + BM.y_2 = obj.Y_eta(BM.index); + BM.z_1 = obj.Z_xi(BM.index); + BM.z_2 = obj.Z_eta(BM.index); + end + [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),... + BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2); + BM.side = sum(BM.index); + BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); + end + + % Characteristic boundary condition + function [closure, penalty] = boundary_condition_char(obj,BM) + side = BM.side; + pos = BM.pos; + neg = BM.neg; + zeroval = BM.zeroval; + V = BM.V; + Vi = BM.Vi; + Hi = BM.Hi; + D = BM.D; + e_ = BM.e_; + + switch BM.boundpos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + closure = Hi*e_*V*tau*Vi_plus*e_'; + penalty = -Hi*e_*V*tau*Vi_plus; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + closure = Hi*e_*V*tau*Vi_minus*e_'; + penalty = -Hi*e_*V*tau*Vi_minus; + end + end + + % General boundary condition in the form Lu=g(x) + function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) + side = BM.side; + pos = BM.pos; + neg = BM.neg; + zeroval = BM.zeroval; + V = BM.V; + Vi = BM.Vi; + Hi = BM.Hi; + D = BM.D; + e_ = BM.e_; + index = BM.index; + + switch BM.boundary + case{'b','B','bottom'} + Ji_vec = diag(obj.Ji); + Ji = diag(Ji_vec(index)); + Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index)); + Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index)); + Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index)); + + L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]); + end + + switch BM.boundpos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + R = -inv(L*V_plus)*(L*V_minus); + closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + R = -inv(L*V_minus)*(L*V_plus); + closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; + end + end + + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi + % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign + % [d+ ] + % D = [ d0 ] + % [ d-] + % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D + function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) + params = obj.params; + eps = 10^(-10); + if(sum(abs(x_1))>eps) + syms x_1s + else + x_1s = 0; + end + + if(sum(abs(x_2))>eps) + syms x_2s; + else + x_2s = 0; + end + + + if(sum(abs(y_1))>eps) + syms y_1s + else + y_1s = 0; + end + + if(sum(abs(y_2))>eps) + syms y_2s; + else + y_2s = 0; + end + + if(sum(abs(z_1))>eps) + syms z_1s + else + z_1s = 0; + end + + if(sum(abs(z_2))>eps) + syms z_2s; + else + z_2s = 0; + end + + syms xs ys zs + [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s)); + Vi = inv(V); + xs = x; + ys = y; + zs = z; + x_1s = x_1; + x_2s = x_2; + y_1s = y_1; + y_2s = y_2; + z_1s = z_1; + z_2s = z_2; + + side = max(length(x),length(y)); + Dret = zeros(obj.n,side*obj.n); + Vret = zeros(obj.n,side*obj.n); + Viret = zeros(obj.n,side*obj.n); + + for ii=1:obj.n + for jj=1:obj.n + Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); + end + end + + D = sparse(Dret); + V = sparse(Vret); + Vi = sparse(Viret); + V = obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); + D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); + Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); + DD = diag(D); + + poseig = (DD>0); + zeroeig = (DD==0); + negeig = (DD<0); + + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; + signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; + end + end +end