diff +scheme/Hypsyst2dCurve.m @ 369:9d1fc984f40d feature/hypsyst

Added some comments and cleaned up the code a little
author Ylva Rydin <ylva.rydin@telia.com>
date Thu, 26 Jan 2017 09:57:24 +0100
parents 9b3d7fc61a36
children 459eeb99130f
line wrap: on
line diff
--- a/+scheme/Hypsyst2dCurve.m	Wed Jan 25 15:37:12 2017 +0100
+++ b/+scheme/Hypsyst2dCurve.m	Thu Jan 26 09:57:24 2017 +0100
@@ -1,362 +1,378 @@
 classdef Hypsyst2dCurve < scheme.Scheme
     properties
         m % Number of points in each direction, possibly a vector
-        n %size of system
+        n % size of system
         h % Grid spacing
         X,Y % Values of x and y for each grid point
         
-        J, Ji %Jacobaian and inverse Jacobian
+        J, Ji % Jacobaian and inverse Jacobian
         xi,eta
         Xi,Eta
         
         A,B
-        X_eta, Y_eta 
+        X_eta, Y_eta
         X_xi,Y_xi
         order % Order accuracy for the approximation
-
+        
         D % non-stabalized scheme operator
         Ahat, Bhat, E
-    
+        
         H % Discrete norm
-        Hxii,Hetai % Kroneckerd norms in xi and eta. 
+        Hxii,Hetai % Kroneckerd norms in xi and eta.
         I_xi,I_eta, I_N, onesN
         e_w, e_e, e_s, e_n
         index_w, index_e,index_s,index_n
-        params %parameters for the coeficient matrice
+        params % Parameters for the coeficient matrice
     end
-
-
+    
+    
     methods
+        % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu
         function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti)
             default_arg('E', [])
             xilim = {0 1};
             etalim = {0 1};
-
+            
             if length(m) == 1
                 m = [m m];
             end
             obj.params = params;
             obj.A=A;
             obj.B=B;
-                        
+            
             obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta);
             obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi);
             obj.E=@(params,x,y,~,~)E(params,x,y);
-
+            
             m_xi = m(1);
             m_eta = m(2);
             m_tot=m_xi*m_eta;
-       
+            
             ops_xi = sbp.D2Standard(m_xi,xilim,order);
             ops_eta = sbp.D2Standard(m_eta,etalim,order);
-
+            
             obj.xi = ops_xi.x;
             obj.eta = ops_eta.x;
-
+            
             obj.Xi = kr(obj.xi,ones(m_eta,1));
-            obj.Eta = kr(ones(m_xi,1),obj.eta);         
-
+            obj.Eta = kr(ones(m_xi,1),obj.eta);
+            
             obj.n = length(A(obj.params,0,0));
             obj.onesN=ones(obj.n);
             
             obj.index_w=1:m_eta;
-            obj.index_e=(m_tot-m_eta+1):m_tot;
+            obj.index_e=(m_tot-m_e        
+        
+        metric_termsta+1):m_tot;
             obj.index_s=1:m_eta:(m_tot-m_eta+1);
             obj.index_n=(m_eta):m_eta:m_tot;
-
+            
             I_n = eye(obj.n);
             I_xi = speye(m_xi);
             obj.I_xi = I_xi;
             I_eta = speye(m_eta);
             obj.I_eta = I_eta;
-
+            
             D1_xi = kr(I_n, ops_xi.D1, I_eta);
             obj.Hxii = kr(I_n, ops_xi.HI, I_eta);
             D1_eta = kr(I_n, I_xi, ops_eta.D1);
             obj.Hetai = kr(I_n, I_xi, ops_eta.HI);
-
+            
             obj.e_w = kr(I_n, ops_xi.e_l, I_eta);
             obj.e_e = kr(I_n, ops_xi.e_r, I_eta);
             obj.e_s = kr(I_n, I_xi, ops_eta.e_l);
-            obj.e_n = kr(I_n, I_xi, ops_eta.e_r);
+            obj.e_n = kr(I_n, I_xi,         
+        
+        metric_termsops_eta.e_r);
             
             [X,Y] = ti.map(obj.xi,obj.eta);
-                   
+            
             [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1);
             [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1);
-                    
-            obj.X=reshape(X,m_tot,1);
-            obj.Y=reshape(Y,m_tot,1);
-            obj.X_xi=reshape(x_xi,m_tot,1);
-            obj.Y_xi=reshape(y_xi,m_tot,1);
-            obj.X_eta=reshape(x_eta,m_tot,1);
-            obj.Y_eta=reshape(y_eta,m_tot,1);
-           
+            
+            obj.X = reshape(X,m_tot,1);
+            obj.Y = reshape(Y,m_tot,1);
+            obj.X_xi = reshape(x_xi,m_tot,1);
+            obj.Y_xi = reshape(y_xi,m_tot,1);
+            obj.X_eta = reshape(x_eta,m_tot,1);
+            obj.Y_eta = reshape(y_eta,m_tot,1);
+            
             Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta);
             Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi);
             E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]);
-
-            obj.m=m;
-            obj.h=[ops_xi.h ops_eta.h];
-            obj.order=order;
-            obj.J=obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi;  
-            obj.Ji =kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
-
-            obj.D=obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated;
-
+            
+            obj.m = m;
+            obj.h = [ops_xi.h ops_eta.h];
+            obj.order = order;
+            obj.J = obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi;
+            obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
+            
+            obj.D = obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated;
+            
         end
-
+        
         % Closure functions return the opertors applied to the own doamin to close the boundary
         % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
-        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w',General boundary conditions'n','s'.
         %       type                is a string specifying the type of boundary condition if there are several.
         %       data                is a function returning the data that should be applied at the boundary.
         function [closure, penalty] = boundary_condition(obj,boundary,type,L)
             default_arg('type','char');
             switch type
                 case{'c','char'}
-                    [closure,penalty]=boundary_condition_char(obj,boundary);
+                    [closure,penalty] = boundary_condition_char(obj,boundary);
                 case{'general'}
-                    [closure,penalty]=boundary_condition_general(obj,boundary,L);
+                    [closure,penalty] = boundary_condition_general(obj,boundary,L);
                 otherwise
                     error('No such boundary condition')
             end
         end
-
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+        
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundaryGeneral boundary conditions)
             error('An interface function does not exist yet');
         end
-
+        
         function N = size(obj)
             N = obj.m;
         end
-
+        
         function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_)
-            params=obj.params;
-
+            params = obj.params;
+            
             if isa(mat,'function_handle')
-                [rows,cols]=size(mat(params,0,0,0,0));
-                x_=kr(obj.onesN,x_);
-                y_=kr(obj.onesN,y_);
-                matVec=mat(params,X',Y',x_',y_');
-                matVec=sparse(matVec);
-                side=max(length(X),length(Y));
+                [rows,cols] = size(mat(params,0,0,0,0));
+                x_ = kr(obj.onesN,x_);
+                y_ = kr(obj.onesN,y_);
+                matVec = mat(params,X',Y',x_',y_');
+                matVec = sparse(matVec);
+                side = max(length(X),length(Y));
             else
-                matVec=mat;
-                [rows,cols]=size(matVec);
-                side=max(length(X),length(Y));
-                cols=cols/side;
+                matVec = mat;
+                [rows,cols] = size(matVec);
+                side = max(length(X),length(Y));
+                cols = cols/side;
             end
-            ret=cell(rows,cols);
-
-            for ii=1:rows
-                for jj=1:cols
-                    ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side));
+            
+            ret = cell(rows,cols);
+            for ii = 1:rows
+                for jj = 1:cols
+                    ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
                 end
             end
-            ret=cell2mat(ret);
+            ret = cell2mat(ret);
         end
-
-
-        function [closure, penalty]=boundary_condition_char(obj,boundary)
-            params=obj.params;
-            X=obj.X; Y=obj.Y;
-            xi=obj.xi; eta=obj.eta;
-           
-
+        
+        %Characteristic boundary conditions
+        function [closure, penalty] = boundary_condition_char(obj,boundary)
+            params = obj.params;
+            X = obj.X;
+            Y = obj.Y;
+            xi = obj.xi;
+            eta = obj.eta;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.Ahat;
-                    boundPos='l';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
-                     side=max(length(eta));
+                    e_ = obj.e_w;
+                    mat = obj.Ahat;
+                    boundPos = 'l';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
+                    side = max(length(eta));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.Ahat;
-                    boundPos='r';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
-                     side=max(length(eta));
+                    e_ = obj.e_e;
+                    mat = obj.Ahat;
+                    boundPos = 'r';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
+                    side = max(length(eta));
                 case {'s','S','south'}
-                    e_=obj.e_s;
-                    mat=obj.Bhat;
-                    boundPos='l';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
-                     side=max(length(xi));
+                    e_ = obj.e_s;
+                    mat = obj.Bhat;
+                    boundPos = 'l';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
+                    side = max(length(xi));
                 case {'n','N','north'}
-                    e_=obj.e_n;
-                    mat=obj.Bhat;
-                    boundPos='r';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
-                    side=max(length(xi));
+                    e_ = obj.e_n;
+                    mat = obj.Bhat;
+                    boundPos = 'r';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
+                    side = max(length(xi));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    closure=Hi*e_*V*tau*Vi_plus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_plus;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    closure = Hi*e_*V*tau*Vi_plus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_plus;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-                    closure=Hi*e_*V*tau*Vi_minus*e_';
-                    penalty=-Hi*e_*V*tau*Vi_minus;
-            end
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    closure = Hi*e_*V*tau*Vi_minus*e_';
+                    penalty = -Hi*e_*V*tau*Vi_minus;
+            end  
         end
-
-
-        function [closure,penalty]=boundary_condition_general(obj,boundary,L)
-            params=obj.params;
-            X=obj.X; Y=obj.Y;
-            xi=obj.xi; eta=obj.eta;
-
+        
+        
+        % General boundary condition in the form Lu=g(x)
+        function [closure,penalty] = boundary_condition_general(obj,boundary,L)
+            params = obj.params;
+            X = obj.X;
+            Y = obj.Y;
+            xi = obj.xi;
+            eta = obj.eta;
+            
             switch boundary
                 case {'w','W','west'}
-                    e_=obj.e_w;
-                    mat=obj.Ahat;
-                    boundPos='l';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
-                   
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_w));
-                    xi_x=Ji*obj.Y_eta(obj.index_w);
-                    xi_y=-Ji*obj.X_eta(obj.index_w);
-                    L=obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]);
-                    side=max(length(eta));
+                    e_ = obj.e_w;
+                    mat = obj.Ahat;
+                    boundPos = 'l';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w));
+                    
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_w));
+                    xi_x = Ji*obj.Y_eta(obj.index_w);
+                    xi_y = -Ji*obj.X_eta(obj.index_w);
+                    L = obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]);
+                    side = max(length(eta));
                 case {'e','E','east'}
-                    e_=obj.e_e;
-                    mat=obj.Ahat;
-                    boundPos='r';
-                    Hi=obj.Hxii;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));       
+                    e_ = obj.e_e;
+                    mat = obj.Ahat;
+                    boundPos = 'r';
+                    Hi = obj.Hxii;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e));
                     
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_e));
-                    xi_x=Ji*obj.Y_eta(obj.index_e);
-                    xi_y=-Ji*obj.X_eta(obj.index_e);
-                    L=obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]);
-                    side=max(length(eta));
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_e));
+                    xi_x = Ji*obj.Y_eta(obj.index_e);
+                    xi_y = -Ji*obj.X_eta(obj.index_e);
+                    L = obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]);
+                    side = max(length(eta));
                 case {'s','S','south'}
-                   e_=obj.e_s;
-                    mat=obj.Bhat;
-                    boundPos='l';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
+                    e_ = obj.e_s;
+                    mat = obj.Bhat;
+                    boundPos = 'l';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s));
                     
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_s));
-                    eta_x=Ji*obj.Y_xi(obj.index_s);
-                    eta_y=-Ji*obj.X_xi(obj.index_s);
-                    L=obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]);
-                    side=max(length(xi));
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_s));
+                    eta_x = Ji*obj.Y_xi(obj.index_s);
+                    eta_y = -Ji*obj.X_xi(obj.index_s);
+                    L = obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]);
+                    side = max(length(xi));
                 case {'n','N','north'}
-                   e_=obj.e_n;            
-
-                    mat=obj.Bhat;
-                    boundPos='r';
-                    Hi=obj.Hetai;
-                    [V,Vi,D,signVec]=obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
-                   
-                    Ji_vec=diag(obj.Ji);
-                    Ji=diag(Ji_vec(obj.index_n));
-                    eta_x=Ji*obj.Y_xi(obj.index_n);
-                    eta_y=-Ji*obj.X_xi(obj.index_n);
-                    L=obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]);
-                
-                    side=max(length(xi));
+                    e_ = obj.e_n;
+                    mat = obj.Bhat;
+                    boundPos = 'r';
+                    Hi = obj.Hetai;
+                    [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n));
                     
+                    Ji_vec = diag(obj.Ji);
+                    Ji = diag(Ji_vec(obj.index_n));
+                    eta_x = Ji*obj.Y_xi(obj.index_n);
+                    eta_y = -Ji*obj.X_xi(obj.index_n);
+                    L = obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]);
+                    side = max(length(xi));
             end
-
-            pos=signVec(1); zeroval=signVec(2); neg=signVec(3);
-
+            
+            pos = signVec(1);
+            zeroval = signVec(2);
+            neg = signVec(3);
+            
             switch boundPos
                 case {'l'}
-                    tau=sparse(obj.n*side,pos);
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi(pos+1:obj.n*side,:);
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos)+1:obj.n*side);
-
-                    tau(1:pos,:)=-abs(D(1:pos,1:pos));
-                    R=-inv(L*V_plus)*(L*V_minus);
-                    closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_plus)*L;
+                    tau = sparse(obj.n*side,pos);
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi(pos+1:obj.n*side,:);
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos)+1:obj.n*side);
+                    
+                    tau(1:pos,:) = -abs(D(1:pos,1:pos));
+                    R = -inv(L*V_plus)*(L*V_minus);
+                    closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
                 case {'r'}
-                    tau=sparse(obj.n*side,neg);
-                    tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
-                    Vi_plus=Vi(1:pos,:);
-                    Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:);
-
-                    V_plus=V(:,1:pos);
-                    V_minus=V(:,(pos+zeroval)+1:obj.n*side);
-                    R=-inv(L*V_minus)*(L*V_plus);
-                    closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
-                    penalty=-Hi*e_*V*tau*inv(L*V_minus)*L;
+                    tau = sparse(obj.n*side,neg);
+                    tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
+                    Vi_plus = Vi(1:pos,:);
+                    Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
+                    
+                    V_plus = V(:,1:pos);
+                    V_minus = V(:,(pos+zeroval)+1:obj.n*side);
+                    R = -inv(L*V_minus)*(L*V_plus);
+                    closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
+                    penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
             end
         end
-
-        function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,x_,y_)
-            params=obj.params;
-            syms xs ys 
-            if(sum(abs(x_))~=0)
+                        
+        % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
+        % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
+        %                                    [d+       ]
+        %                               D =  [   d0    ]
+        %                                    [       d-]
+        % signVec   is a vector specifying the number of possitive, zero and negative eigenvalues of D
+        function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,x_,y_)
+            params = obj.params;
+            syms xs ys
+            if(sum(abs(x_)) ~= 0)
                 syms xs_
             else
-                xs_=0;
+                xs_ = 0;
             end
             
-            if(sum(abs(y_))~=0)
-            syms ys_;
+            if(sum(abs(y_))~= 0)
+                syms ys_;
             else
-                ys_=0;
+                ys_ = 0;
             end
             
-            [V, D]=eig(mat(params,xs,ys,xs_,ys_));
-            Vi=inv(V);
+            [V, D] = eig(mat(params,xs,ys,xs_,ys_));
+            Vi = inv(V);
             syms xs ys xs_ ys_
             
-            xs=x; 
-            ys=y;
-            xs_=x_;
-            ys_=y_;
-
-            side=max(length(x),length(y));
-            Dret=zeros(obj.n,side*obj.n);
-            Vret=zeros(obj.n,side*obj.n);
-            Viret=zeros(obj.n,side*obj.n);
-            for ii=1:obj.n
-                for jj=1:obj.n
-                    Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii));
-                    Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii));
-                    Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii));
+            xs = x;
+            ys = y;
+            xs_ = x_;
+            ys_ = y_;
+            
+            side = max(length(x),length(y));
+            Dret = zeros(obj.n,side*obj.n);
+            Vret = zeros(obj.n,side*obj.n);
+            Viret = zeros(obj.n,side*obj.n);
+            for ii = 1:obj.n
+                for jj = 1:obj.n
+                    Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
+                    Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
+                    Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                 end
             end
-
-            D=sparse(Dret);
-            V=sparse(Vret);
-            Vi=sparse(Viret);
-            V=obj.evaluateCoefficientMatrix(V,x,y,x_,y_);
-            D=obj.evaluateCoefficientMatrix(D,x,y,x_,y_);    
-            Vi=obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_);
-            DD=diag(D);
+            
+            D = sparse(Dret);
+            V = sparse(Vret);
+            Vi = sparse(Viret);
+            V = obj.evaluateCoefficientMatrix(V,x,y,x_,y_);
+            D = obj.evaluateCoefficientMatrix(D,x,y,x_,y_);
+            Vi = obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_);
+            DD = diag(D);
             
-            poseig=(DD>0);
-            zeroeig=(DD==0);
-            negeig=(DD<0);
+            poseig = (DD>0);
+            zeroeig = (DD==0);
+            negeig = (DD<0);
             
-            D=diag([DD(poseig); DD(zeroeig); DD(negeig)]);
-            V=[V(:,poseig) V(:,zeroeig) V(:,negeig)];            
-            Vi=[Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
-            signVec=[sum(poseig),sum(zeroeig),sum(negeig)];
+            D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
+            V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
+            Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
+            signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
         end
     end
 end
\ No newline at end of file