diff +scheme/Elastic2dCurvilinear.m @ 739:8efc04e97da4 feature/poroelastic

Add Elastic curvilinear. Traction and Dirichlet BC working.
author Martin Almquist <malmquist@stanford.edu>
date Mon, 07 May 2018 14:35:54 -0700
parents
children f4e2a6a2df08
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Elastic2dCurvilinear.m	Mon May 07 14:35:54 2018 -0700
@@ -0,0 +1,616 @@
+classdef Elastic2dCurvilinear < scheme.Scheme
+
+% Discretizes the elastic wave equation in curvilinear coordinates.
+%
+% Untransformed equation:
+% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i 
+%
+% Transformed equation:
+% J*rho u_{i,tt} = dk J b_ik lambda b_jl dl u_j 
+%                + dk J b_jk mu b_il dl u_j 
+%                + dk J b_jk mu b_jl dl u_i 
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrices for varible coefficients
+        LAMBDA % Variable coefficient, related to dilation
+        MU     % Shear modulus, variable coefficient
+        RHO, RHOi % Density, variable
+
+        % Metric coefficients
+        b % Cell matrix of size dim x dim
+        J, Ji
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2_lambda
+        D2_mu
+
+        % Traction operators used for BC
+        T_l, T_r
+        tau_l, tau_r
+
+        H, Hi % Inner products
+        phi % Borrowing constant for (d1 - e^T*D1) from R
+        gamma % Borrowing constant for d1 from M
+        H11 % First element of H
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        E % E{i}^T picks out component i
+        
+        H_boundary_l, H_boundary_r % Boundary inner products
+
+        % Kroneckered norms and coefficients
+        RHOi_kron
+        Ji_kron, J_kron
+        Hi_kron, H_kron
+    end
+
+    methods
+
+        function obj = Elastic2dCurvilinear(g ,order, lambda_fun, mu_fun, rho_fun, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('lambda_fun', @(x,y) 0*x+1);
+            default_arg('mu_fun', @(x,y) 0*x+1);
+            default_arg('rho_fun', @(x,y) 0*x+1);
+            dim = 2;
+
+            lambda = grid.evalOn(g, lambda_fun);
+            mu = grid.evalOn(g, mu_fun);
+            rho = grid.evalOn(g, rho_fun);
+            m = g.size();
+            obj.m = m;
+            m_tot = g.N();
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), {0, 1}, order);
+            end
+
+            % Borrowing constants
+            for i = 1:dim
+                beta = ops{i}.borrowing.R.delta_D;
+                obj.H11{i} = ops{i}.borrowing.H11;
+                obj.phi{i} = beta/obj.H11{i};
+                obj.gamma{i} = ops{i}.borrowing.M.d1;
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            %====== Assemble full operators ========
+
+            % Variable coefficients
+            LAMBDA = spdiag(lambda);
+            obj.LAMBDA = LAMBDA;
+            MU = spdiag(mu);
+            obj.MU = MU;
+            RHO = spdiag(rho);
+            obj.RHO = RHO;
+            obj.RHOi = inv(RHO);
+
+            % Allocate
+            obj.D1 = cell(dim,1);
+            obj.D2_lambda = cell(dim,dim,dim);
+            obj.D2_mu = cell(dim,dim,dim);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % -- Metric coefficients ----
+            coords = g.points();
+            x = coords(:,1);
+            y = coords(:,2);
+
+            x_xi = obj.D1{1}*x;
+            x_eta = obj.D1{2}*x;
+            y_xi = obj.D1{1}*y;
+            y_eta = obj.D1{2}*y;
+
+            J = x_xi.*y_eta - x_eta.*y_xi;
+
+            b = cell(dim,dim);
+            b{1,1} = y_eta./J;
+            b{1,2} = -x_eta./J;
+            b{2,1} = -y_xi./J;
+            b{2,2} = x_xi./J;
+
+            % Scale factors for boundary integrals
+            beta = cell(dim,1);
+            beta{1} = sqrt(x_eta.^2 + y_eta.^2);
+            beta{2} = sqrt(x_xi.^2 + y_xi.^2);
+
+
+            J = spdiag(J);
+            Ji = inv(J);
+            for i = 1:dim
+                beta{i} = spdiag(beta{i});
+                for j = 1:dim
+                    b{i,j} = spdiag(b{i,j});
+                end
+            end
+            obj.J = J;
+            obj.Ji = Ji;
+            obj.b = b;
+            %----------------------------
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        obj.D2_lambda{i,j,k} = sparse(m_tot);
+                        obj.D2_mu{i,j,k} = sparse(m_tot);
+                    end
+                end
+            end
+            ind = grid.funcToMatrix(g, 1:m_tot);
+
+            % x-dir
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1
+
+                        coeff_lambda = J*b{i,k}*b{j,k}*lambda;
+                        coeff_mu = J*b{j,k}*b{i,k}*mu;
+
+                        for col = 1:m(2)
+                            D_lambda = D2{1}(coeff_lambda(ind(:,col)));
+                            D_mu = D2{1}(coeff_mu(ind(:,col)));
+
+                            p = ind(:,col);
+                            obj.D2_lambda{i,j,k}(p,p) = D_lambda;
+                            obj.D2_mu{i,j,k}(p,p) = D_mu;
+                        end
+
+                    end
+                end
+            end
+
+            % y-dir
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 2
+
+                        coeff_lambda = J*b{i,k}*b{j,k}*lambda;
+                        coeff_mu = J*b{j,k}*b{i,k}*mu;
+
+                        for row = 1:m(1)
+                            D_lambda = D2{2}(coeff_lambda(ind(row,:)));
+                            D_mu = D2{2}(coeff_mu(ind(row,:)));
+
+                            p = ind(row,:);
+                            obj.D2_lambda{i,j,k}(p,p) = D_lambda;
+                            obj.D2_mu{i,j,k}(p,p) = D_mu;
+                        end
+
+                    end
+                end
+            end
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary_l = cell(dim,1);
+            obj.H_boundary_l{1} = obj.e_l{1}'*beta{1}*obj.e_l{1}*H{2};
+            obj.H_boundary_l{2} = obj.e_l{2}'*beta{2}*obj.e_l{2}*H{1};
+            obj.H_boundary_r = cell(dim,1);
+            obj.H_boundary_r{1} = obj.e_r{1}'*beta{1}*obj.e_r{1}*H{2};
+            obj.H_boundary_r{2} = obj.e_r{2}'*beta{2}*obj.e_r{2}*H{1};
+
+            % E{i}^T picks out component i.
+            E = cell(dim,1);
+            I = speye(m_tot,m_tot);
+            for i = 1:dim
+                e = sparse(dim,1);
+                e(i) = 1;
+                E{i} = kron(I,e);
+            end
+            obj.E = E;
+
+            % Differentiation matrix D (without SAT)
+            D2_lambda = obj.D2_lambda;
+            D2_mu = obj.D2_mu;
+            D1 = obj.D1;
+            D = sparse(dim*m_tot,dim*m_tot);
+            d = @kroneckerDelta;    % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            for i = 1:dim
+                for j = 1:dim
+                    for k = 1:dim
+                        for l = 1:dim
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_lambda{i,j,k}*E{j}' + ...
+                                                      db(k,l)*D1{k}*J*b{i,k}*b{j,l}*LAMBDA*D1{l}*E{j}' ...
+                                                  );
+
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{i,j,k}*E{j}' + ...
+                                                      db(k,l)*D1{k}*J*b{j,k}*b{i,l}*MU*D1{l}*E{j}' ...
+                                                  );
+
+                            D = D + E{i}*Ji*inv(RHO)*( d(k,l)*D2_mu{j,j,k}*E{i}' + ...
+                                                      db(k,l)*D1{k}*J*b{j,k}*b{j,l}*MU*D1{l}*E{i}' ...
+                                                  );
+
+                        end
+                    end
+                end
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Numerical traction operators for BC.
+            % Because d1 =/= e0^T*D1, the numerical tractions are different
+            % at every boundary.
+            T_l = cell(dim,1);
+            T_r = cell(dim,1);
+            tau_l = cell(dim,1);
+            tau_r = cell(dim,1);
+            % tau^{j}_i = sum_k T^{j}_{ik} u_k
+
+            d1_l = obj.d1_l;
+            d1_r = obj.d1_r;
+            e_l = obj.e_l;
+            e_r = obj.e_r;
+
+            % Loop over boundaries
+            for j = 1:dim
+                T_l{j} = cell(dim,dim);
+                T_r{j} = cell(dim,dim);
+                tau_l{j} = cell(dim,1);
+                tau_r{j} = cell(dim,1);
+
+                % Loop over components
+                for i = 1:dim
+                    tau_l{j}{i} = sparse(m_tot,dim*m_tot);
+                    tau_r{j}{i} = sparse(m_tot,dim*m_tot);
+
+                    % Loop over components that T_{ik}^{(j)} acts on
+                    for k = 1:dim
+
+                        T_l{j}{i,k} = sparse(m_tot,m_tot);
+                        T_r{j}{i,k} = sparse(m_tot,m_tot);
+
+                        for m = 1:dim
+                            for l = 1:dim
+                                T_l{j}{i,k} = T_l{j}{i,k} + ... 
+                                -d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ...
+                                -d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m}) ...
+                                -d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_l{m}*d1_l{m}' + db(m,j)*D1{m});
+
+                                T_r{j}{i,k} = T_r{j}{i,k} + ... 
+                                d(k,l)* J*b{i,j}*b{k,m}*LAMBDA*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ...
+                                d(k,l)* J*b{k,j}*b{i,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m}) + ...
+                                d(i,k)* J*b{l,j}*b{l,m}*MU*(d(m,j)*e_r{m}*d1_r{m}' + db(m,j)*D1{m});
+                            end
+                        end
+
+                        T_l{j}{i,k} = inv(beta{j})*T_l{j}{i,k};
+                        T_r{j}{i,k} = inv(beta{j})*T_r{j}{i,k}; 
+
+                        tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}';
+                        tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}';
+                    end
+
+                end
+            end
+            obj.T_l = T_l;
+            obj.T_r = T_r;
+            obj.tau_l = tau_l;
+            obj.tau_r = tau_r;
+
+            % Kroneckered norms and coefficients
+            I_dim = speye(dim);
+            obj.RHOi_kron = kron(obj.RHOi, I_dim);
+            obj.Ji_kron = kron(obj.Ji, I_dim);
+            obj.Hi_kron = kron(obj.Hi, I_dim);
+            obj.H_kron = kron(obj.H, I_dim);
+            obj.J_kron = kron(obj.J, I_dim);
+
+            % Misc.
+            obj.h = g.scaling();
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a cell array of strings specifying the type of boundary condition for each component.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, tuning)
+            default_arg('type',{'free','free'});
+            default_arg('tuning', 1.2);
+
+            if ~iscell(type)
+                type = {type, type};
+            end
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+
+            E = obj.E;
+            Hi = obj.Hi;
+            LAMBDA = obj.LAMBDA;
+            MU = obj.MU;
+            RHOi = obj.RHOi;
+            Ji = obj.Ji;
+
+            dim = obj.dim;
+            m_tot = obj.grid.N();
+
+            % Preallocate
+            closure = sparse(dim*m_tot, dim*m_tot);
+            penalty = cell(dim,1);
+            for k = 1:dim
+                penalty{k} = sparse(dim*m_tot, m_tot/obj.m(j));
+            end
+
+            % Loop over components that we (potentially) have different BC on
+            for k = 1:dim
+                switch type{k}
+
+                % Dirichlet boundary condition
+                case {'D','d','dirichlet','Dirichlet'}
+
+                    phi = obj.phi{j};
+                    h = obj.h(j);
+                    h11 = obj.H11{j}*h;
+                    gamma = obj.gamma{j};
+
+                    a_lambda = dim/h11 + 1/(h11*phi);
+                    a_mu_i = 2/(gamma*h);
+                    a_mu_ij = 2/h11 + 1/(h11*phi);
+
+                    d = @kroneckerDelta;  % Kronecker delta
+                    db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+                    alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ...
+                                          + d(i,j)* a_mu_i*MU ...
+                                          + db(i,j)*a_mu_ij*MU ); 
+
+                    % Loop over components that Dirichlet penalties end up on
+                    for i = 1:dim
+                        C = T{k,i};
+                        A = -d(i,k)*alpha(i,j);
+                        B = A + C;
+                        closure = closure + E{i}*RHOi*Hi*Ji*B'*e*H_gamma*(e'*E{k}' ); 
+                        penalty{k} = penalty{k} - E{i}*RHOi*Hi*Ji*B'*e*H_gamma;
+                    end 
+
+                % Free boundary condition
+                case {'F','f','Free','free','traction','Traction','t','T'}
+                        closure = closure - E{k}*RHOi*Ji*Hi*e*H_gamma* (e'*tau{k} ); 
+                        penalty{k} = penalty{k} + E{k}*RHOi*Ji*Hi*e*H_gamma;
+
+                % Unknown boundary condition
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+                end
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            % Operators without subscripts are from the own domain.
+            error('Not implemented');
+            tuning = 1.2;
+
+            % j is the coordinate direction of the boundary
+            j = obj.get_boundary_number(boundary);
+            j_v = neighbour_scheme.get_boundary_number(neighbour_boundary);
+
+            % Get boundary operators
+            [e, T, tau, H_gamma] = obj.get_boundary_operator({'e','T','tau','H'}, boundary);
+            [e_v, tau_v] = neighbour_scheme.get_boundary_operator({'e','tau'}, neighbour_boundary);
+
+            % Operators and quantities that correspond to the own domain only
+            Hi = obj.Hi;
+            RHOi = obj.RHOi;
+            dim = obj.dim;
+        
+            %--- Other operators ----
+            m_tot_u = obj.grid.N();
+            E = obj.E;
+            LAMBDA_u = obj.LAMBDA;
+            MU_u = obj.MU;
+            lambda_u = e'*LAMBDA_u*e;
+            mu_u = e'*MU_u*e;
+
+            m_tot_v = neighbour_scheme.grid.N();
+            E_v = neighbour_scheme.E;
+            LAMBDA_v = neighbour_scheme.LAMBDA;
+            MU_v = neighbour_scheme.MU;
+            lambda_v = e_v'*LAMBDA_v*e_v;
+            mu_v = e_v'*MU_v*e_v;
+            %-------------------------
+            
+            % Borrowing constants
+            phi_u = obj.phi{j};
+            h_u = obj.h(j);
+            h11_u = obj.H11{j}*h_u;
+            gamma_u = obj.gamma{j};
+
+            phi_v = neighbour_scheme.phi{j_v};
+            h_v = neighbour_scheme.h(j_v);
+            h11_v = neighbour_scheme.H11{j_v}*h_v;
+            gamma_v = neighbour_scheme.gamma{j_v};
+
+            % E > sum_i 1/(2*alpha_ij)*(tau_i)^2
+            function [alpha_ii, alpha_ij] = computeAlpha(phi,h,h11,gamma,lambda,mu) 
+                th1 = h11/(2*dim);
+                th2 = h11*phi/2;
+                th3 = h*gamma;
+                a1 = ( (th1 + th2)*th3*lambda + 4*th1*th2*mu ) / (2*th1*th2*th3);
+                a2 = ( 16*(th1 + th2)*lambda*mu ) / (th1*th2*th3);
+                alpha_ii = a1 + sqrt(a2 + a1^2);
+
+                alpha_ij = mu*(2/h11 + 1/(phi*h11));
+            end
+
+            [alpha_ii_u, alpha_ij_u] = computeAlpha(phi_u,h_u,h11_u,gamma_u,lambda_u,mu_u);
+            [alpha_ii_v, alpha_ij_v] = computeAlpha(phi_v,h_v,h11_v,gamma_v,lambda_v,mu_v);  
+            sigma_ii = tuning*(alpha_ii_u + alpha_ii_v)/4;
+            sigma_ij = tuning*(alpha_ij_u + alpha_ij_v)/4;
+
+            d = @kroneckerDelta;  % Kronecker delta
+            db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta
+            sigma = @(i,j) tuning*(d(i,j)*sigma_ii + db(i,j)*sigma_ij);
+
+            % Preallocate
+            closure = sparse(dim*m_tot_u, dim*m_tot_u);
+            penalty = sparse(dim*m_tot_u, dim*m_tot_v);
+
+            % Loop over components that penalties end up on
+            for i = 1:dim
+                closure = closure - E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e'*E{i}';
+                penalty = penalty + E{i}*RHOi*Hi*e*sigma(i,j)*H_gamma*e_v'*E_v{i}';
+
+                closure = closure - 1/2*E{i}*RHOi*Hi*e*H_gamma*e'*tau{i};
+                penalty = penalty - 1/2*E{i}*RHOi*Hi*e*H_gamma*e_v'*tau_v{i};
+
+                % Loop over components that we have interface conditions on
+                for k = 1:dim
+                    closure = closure + 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e'*E{k}'; 
+                    penalty = penalty - 1/2*E{i}*RHOi*Hi*T{k,i}'*e*H_gamma*e_v'*E_v{k}'; 
+                end 
+            end
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op: may be a cell array of strings
+        function [varargout] = get_boundary_operator(obj, op, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            if ~iscell(op)
+                op = {op};
+            end
+
+            for i = 1:length(op)
+                switch op{i}
+                    case 'e'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.e_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.e_r{j};
+                        end
+                    case 'd'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.d1_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.d1_r{j};
+                        end
+                    case 'H'
+                        switch boundary 
+                            case {'w','W','west','West','s','S','south','South'}
+                                    varargout{i} = obj.H_boundary_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                    varargout{i} = obj.H_boundary_r{j};
+                        end
+                    case 'T'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.T_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.T_r{j};
+                        end
+                    case 'tau'
+                        switch boundary
+                            case {'w','W','west','West','s','S','south','South'}
+                                varargout{i} = obj.tau_l{j};
+                            case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                                varargout{i} = obj.tau_r{j};
+                        end                        
+                    otherwise
+                        error(['No such operator: operator = ' op{i}]);
+                end
+            end
+
+        end
+
+        function N = size(obj)
+            N = obj.dim*prod(obj.m);
+        end
+    end
+end