diff +parametrization/Ti.m @ 886:8894e9c49e40 feature/timesteppers

Merge with default for latest changes
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 15 Nov 2018 16:36:21 -0800
parents edb1d60b0b77
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+parametrization/Ti.m	Thu Nov 15 16:36:21 2018 -0800
@@ -0,0 +1,255 @@
+classdef Ti
+    properties
+        gs % {4}Curve
+        S  % FunctionHandle(u,v)
+    end
+
+    methods
+        % TODO function to label boundary names.
+        %  function to find largest and smallest delta h in the grid. Maybe shouldnt live here
+        function obj = Ti(C1,C2,C3,C4)
+            obj.gs = {C1,C2,C3,C4};
+
+            g1 = C1.g;
+            g2 = C2.g;
+            g3 = C3.g;
+            g4 = C4.g;
+
+            A = g1(0);
+            B = g2(0);
+            C = g3(0);
+            D = g4(0);
+
+            function o = S_fun(u,v)
+                if isrow(u) && isrow(v)
+                    flipped = false;
+                else
+                    flipped = true;
+                    u = u';
+                    v = v';
+                end
+
+                x1 = g1(u);
+                x2 = g2(v);
+                x3 = g3(1-u);
+                x4 = g4(1-v);
+
+                o1 = (1-v).*x1(1,:) + u.*x2(1,:) + v.*x3(1,:) + (1-u).*x4(1,:) ...
+                    -((1-u).*(1-v).*A(1,:) + u.*(1-v).*B(1,:) + u.*v.*C(1,:) + (1-u).*v.*D(1,:));
+                o2 = (1-v).*x1(2,:) + u.*x2(2,:) + v.*x3(2,:) + (1-u).*x4(2,:) ...
+                    -((1-u).*(1-v).*A(2,:) + u.*(1-v).*B(2,:) + u.*v.*C(2,:) + (1-u).*v.*D(2,:));
+
+                if ~flipped
+                    o = [o1;o2];
+                else
+                    o = [o1'; o2'];
+                end
+            end
+
+            obj.S = @S_fun;
+        end
+
+        % Does this funciton make sense?
+        % Should it always be eval?
+        function [X,Y] = map(obj,u,v)
+            default_arg('v',u);
+
+            if isscalar(u)
+                u = linspace(0,1,u);
+            end
+
+            if isscalar(v)
+                v = linspace(0,1,v);
+            end
+
+            S = obj.S;
+
+            nu = length(u);
+            nv = length(v);
+
+            X = zeros(nv,nu);
+            Y = zeros(nv,nu);
+
+            u = rowVector(u);
+            v = rowVector(v);
+
+            for i = 1:nv
+                p = S(u,v(i));
+                X(i,:) = p(1,:);
+                Y(i,:) = p(2,:);
+            end
+        end
+
+        % Evaluate S for each pair of u and v,
+        % Return same shape as u
+        function [x, y] = eval(obj, u, v)
+            x = zeros(size(u));
+            y = zeros(size(u));
+
+            for i = 1:numel(u)
+                p = obj.S(u(i), v(i));
+                x(i) = p(1,:);
+                y(i) = p(2,:);
+            end
+        end
+
+        function h = plot(obj,nu,nv)
+            S = obj.S;
+
+            default_arg('nv',nu)
+
+            u = linspace(0,1,nu);
+            v = linspace(0,1,nv);
+
+            m = 100;
+
+            X = zeros(nu+nv,m);
+            Y = zeros(nu+nv,m);
+
+
+            t = linspace(0,1,m);
+            for i = 1:nu
+                p = S(u(i),t);
+                X(i,:) = p(1,:);
+                Y(i,:) = p(2,:);
+            end
+
+            for i = 1:nv
+                p = S(t,v(i));
+                X(i+nu,:) = p(1,:);
+                Y(i+nu,:) = p(2,:);
+            end
+
+            h = line(X',Y');
+        end
+
+
+        function h = show(obj,nu,nv)
+            default_arg('nv',nu)
+            S = obj.S;
+
+            if(nu>2 || nv>2)
+                h.grid = obj.plot(nu,nv);
+                set(h.grid,'Color',[0 0.4470 0.7410]);
+            end
+
+            h.border = obj.plot(2,2);
+            set(h.border,'Color',[0.8500 0.3250 0.0980]);
+            set(h.border,'LineWidth',2);
+        end
+
+
+        % TRANSFORMATIONS
+        function ti = translate(obj,a)
+            gs = obj.gs;
+
+            for i = 1:length(gs)
+                new_gs{i} = gs{i}.translate(a);
+            end
+
+            ti = parametrization.Ti(new_gs{:});
+        end
+
+        % Mirrors the Ti so that the resulting Ti is still left handed.
+        %  (Corrected by reversing curves and switching e and w)
+        function ti = mirror(obj, a, b)
+            gs = obj.gs;
+
+            new_gs = cell(1,4);
+
+            new_gs{1} = gs{1}.mirror(a,b).reverse();
+            new_gs{3} = gs{3}.mirror(a,b).reverse();
+            new_gs{2} = gs{4}.mirror(a,b).reverse();
+            new_gs{4} = gs{2}.mirror(a,b).reverse();
+
+            ti = parametrization.Ti(new_gs{:});
+        end
+
+        function ti = rotate(obj,a,rad)
+            gs = obj.gs;
+
+            for i = 1:length(gs)
+                new_gs{i} = gs{i}.rotate(a,rad);
+            end
+
+            ti = parametrization.Ti(new_gs{:});
+        end
+
+        function ti = rotate_edges(obj,n);
+            new_gs = cell(1,4);
+            for i = 0:3
+                new_i = mod(i - n,4);
+                new_gs{new_i+1} = obj.gs{i+1};
+            end
+            ti = parametrization.Ti(new_gs{:});
+        end
+    end
+
+    methods(Static)
+        function obj = points(p1, p2, p3, p4)
+            g1 = parametrization.Curve.line(p1,p2);
+            g2 = parametrization.Curve.line(p2,p3);
+            g3 = parametrization.Curve.line(p3,p4);
+            g4 = parametrization.Curve.line(p4,p1);
+
+            obj = parametrization.Ti(g1,g2,g3,g4);
+        end
+
+        function obj = rectangle(a, b)
+            p1 = a;
+            p2 = [b(1), a(2)];
+            p3 = b;
+            p4 = [a(1), b(2)];
+
+            obj = parametrization.Ti.points(p1,p2,p3,p4);
+        end
+
+        % Like the constructor but allows inputing line curves as 2-cell arrays:
+        %     example: parametrization.Ti.linesAndCurves(g1, g2, {a, b} g4)
+        function obj = linesAndCurves(C1, C2, C3, C4)
+            C = {C1, C2, C3, C4};
+            c = cell(1,4);
+
+            for i = 1:4
+                if ~iscell(C{i})
+                    c{i} = C{i};
+                else
+                    c{i} = parametrization.Curve.line(C{i}{:});
+                end
+            end
+
+            obj = parametrization.Ti(c{:});
+        end
+
+        function label(varargin)
+            if nargin == 2 && ischar(varargin{2})
+                label_impl(varargin{:});
+            else
+                for i = 1:length(varargin)
+                    label_impl(varargin{i},inputname(i));
+                end
+            end
+
+
+            function label_impl(ti,str)
+                S = ti.S;
+
+                pc = S(0.5,0.5);
+
+                margin = 0.1;
+                pw = S(  margin,      0.5);
+                pe = S(1-margin,      0.5);
+                ps = S(     0.5,   margin);
+                pn = S(     0.5, 1-margin);
+
+
+                ti.show(2,2);
+                parametrization.place_label(pc,str);
+                parametrization.place_label(pw,'w');
+                parametrization.place_label(pe,'e');
+                parametrization.place_label(ps,'s');
+                parametrization.place_label(pn,'n');
+            end
+        end
+    end
+end
\ No newline at end of file