diff +sbp/+implementations/d4_lonely_8_higher_boundary_order.m @ 325:72468bc9b63f feature/beams

Renamed some operator implementations.
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 26 Sep 2016 09:55:16 +0200
parents +sbp/+implementations/d4_variable_8_higher_boundary_order.m@c0cbffcf6513
children b19e142fcae1
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_8_higher_boundary_order.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,75 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_8_higher_boundary_order(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 8:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%%                                         %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %This is 3rd order accurate at the boundary. Not same norm as D1 operator
+
+    BP = 8;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:8) = [0.7488203e7/0.25401600e8, 0.5539027e7/0.3628800e7, 0.308923e6/0.1209600e7, 0.1307491e7/0.725760e6, 0.59407e5/0.145152e6, 0.1548947e7/0.1209600e7, 0.3347963e7/0.3628800e7, 0.25641187e8/0.25401600e8];
+    Hv(m-7:m) = rot90(Hv(1:8),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:7) = [-0.49e2/0.20e2 6 -0.15e2/0.2e1 0.20e2/0.3e1 -0.15e2/0.4e1 0.6e1/0.5e1 -0.1e1/0.6e1]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:7) = [0.203e3/0.45e2 -0.87e2/0.5e1 0.117e3/0.4e1 -0.254e3/0.9e1 0.33e2/0.2e1 -0.27e2/0.5e1 0.137e3/0.180e3]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:7) = [-0.49e2/0.8e1 29 -0.461e3/0.8e1 62 -0.307e3/0.8e1 13 -0.15e2/0.8e1]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
+
+    stencil = [-0.41e2/0.7560e4, 0.1261e4/0.15120e5, -0.541e3/0.840e3, 0.4369e4/0.1260e4, -0.1669e4/0.180e3, 0.1529e4/0.120e3, -0.1669e4/0.180e3, 0.4369e4/0.1260e4, -0.541e3/0.840e3, 0.1261e4/0.15120e5,-0.41e2/0.7560e4];
+    diags = -5:5;
+
+    M4_U = [
+        0.1031569831e10/0.155675520e9 -0.32874237931e11/0.1452971520e10 0.3069551773e10/0.90810720e8 -0.658395212131e12/0.21794572800e11 0.31068454007e11/0.1816214400e10 -0.39244130657e11/0.7264857600e10 0.1857767503e10/0.2724321600e10 0.1009939e7/0.49420800e8;
+        -0.32874237931e11/0.1452971520e10 0.12799022387e11/0.155675520e9 -0.134456503627e12/0.1037836800e10 0.15366749479e11/0.129729600e9 -0.207640325549e12/0.3113510400e10 0.5396424073e10/0.259459200e9 -0.858079351e9/0.345945600e9 -0.19806607e8/0.170270100e9;
+        0.3069551773e10/0.90810720e8 -0.134456503627e12/0.1037836800e10 0.6202056779e10/0.28828800e8 -0.210970327081e12/0.1037836800e10 0.2127730129e10/0.18532800e8 -0.4048692749e10/0.115315200e9 0.1025943959e10/0.259459200e9 0.71054663e8/0.290594304e9;
+        -0.658395212131e12/0.21794572800e11 0.15366749479e11/0.129729600e9 -0.210970327081e12/0.1037836800e10 0.31025293213e11/0.155675520e9 -0.1147729001e10/0.9884160e7 0.1178067773e10/0.32432400e8 -0.13487255581e11/0.3113510400e10 -0.231082547e9/0.1816214400e10;
+        0.31068454007e11/0.1816214400e10 -0.207640325549e12/0.3113510400e10 0.2127730129e10/0.18532800e8 -0.1147729001e10/0.9884160e7 0.11524865123e11/0.155675520e9 -0.29754506009e11/0.1037836800e10 0.14231221e8/0.2316600e7 -0.15030629699e11/0.21794572800e11;
+        -0.39244130657e11/0.7264857600e10 0.5396424073e10/0.259459200e9 -0.4048692749e10/0.115315200e9 0.1178067773e10/0.32432400e8 -0.29754506009e11/0.1037836800e10 0.572247737e9/0.28828800e8 -0.11322059051e11/0.1037836800e10 0.3345834083e10/0.908107200e9;
+        0.1857767503e10/0.2724321600e10 -0.858079351e9/0.345945600e9 0.1025943959e10/0.259459200e9 -0.13487255581e11/0.3113510400e10 0.14231221e8/0.2316600e7 -0.11322059051e11/0.1037836800e10 0.10478882597e11/0.778377600e9 -0.68446325191e11/0.7264857600e10;
+        0.1009939e7/0.49420800e8 -0.19806607e8/0.170270100e9 0.71054663e8/0.290594304e9 -0.231082547e9/0.1816214400e10 -0.15030629699e11/0.21794572800e11 0.3345834083e10/0.908107200e9 -0.68446325191e11/0.7264857600e10 0.9944747557e10/0.778377600e9;
+    ];
+
+    M4(1:8,1:8) = M4_U;
+    M4(m-7:m,m-7:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end