diff +multiblock/DiffOp.m @ 781:69ab0e69f972 feature/interpolation

Merge with feature/grids
author Jonatan Werpers <jonatan@werpers.com>
date Tue, 24 Jul 2018 20:14:29 -0700
parents e05465aa2e25
children 5cf9fdf4c98f 517d6019d63c
line wrap: on
line diff
--- a/+multiblock/DiffOp.m	Tue May 22 13:29:47 2018 -0700
+++ b/+multiblock/DiffOp.m	Tue Jul 24 20:14:29 2018 -0700
@@ -10,13 +10,13 @@
     end
 
     methods
-        function obj = DiffOp(doHand, grid, order, doParam)
+        function obj = DiffOp(doHand, g, order, doParam)
             %  doHand -- may either be a function handle or a cell array of
             %            function handles for each grid. The function handle(s)
             %            should be on the form do = doHand(grid, order, ...)
             %            Additional parameters for each doHand may be provided in
             %            the doParam input.
-            %    grid -- a multiblock grid
+            %       g -- a multiblock grid
             %   order -- integer specifying the order of accuracy
             % doParam -- may either be a cell array or a cell array of cell arrays
             %            for each block. If it is a cell array with length equal
@@ -26,9 +26,9 @@
             %            extra parameters to all doHand: doHand(..., doParam{:})
             default_arg('doParam', [])
 
-            [getHand, getParam] = parseInput(doHand, grid, doParam);
+            [getHand, getParam] = parseInput(doHand, g, doParam);
 
-            nBlocks = grid.nBlocks();
+            nBlocks = g.nBlocks();
 
             obj.order = order;
 
@@ -40,7 +40,7 @@
                 if ~iscell(p)
                     p = {p};
                 end
-                obj.diffOps{i} = h(grid.grids{i}, order, p{:});
+                obj.diffOps{i} = h(g.grids{i}, order, p{:});
             end
 
 
@@ -53,7 +53,7 @@
 
 
             % Build the differentiation matrix
-            obj.blockmatrixDiv = {grid.Ns, grid.Ns};
+            obj.blockmatrixDiv = {g.Ns, g.Ns};
             D = blockmatrix.zero(obj.blockmatrixDiv);
             for i = 1:nBlocks
                 D{i,i} = obj.diffOps{i}.D;
@@ -61,7 +61,7 @@
 
             for i = 1:nBlocks
                 for j = 1:nBlocks
-                    intf = grid.connections{i,j};
+                    intf = g.connections{i,j};
                     if isempty(intf)
                         continue
                     end
@@ -77,14 +77,15 @@
                 end
             end
             obj.D = blockmatrix.toMatrix(D);
+            obj.grid = g;
 
 
-            function [getHand, getParam] = parseInput(doHand, grid, doParam)
-                if ~isa(grid, 'multiblock.Grid')
+            function [getHand, getParam] = parseInput(doHand, g, doParam)
+                if ~isa(g, 'multiblock.Grid')
                     error('multiblock:DiffOp:DiffOp:InvalidGrid', 'Requires a multiblock grid.');
                 end
 
-                if iscell(doHand) && length(doHand) == grid.nBlocks()
+                if iscell(doHand) && length(doHand) == g.nBlocks()
                     getHand = @(i)doHand{i};
                 elseif isa(doHand, 'function_handle')
                     getHand = @(i)doHand;
@@ -104,7 +105,7 @@
 
                 % doParam is a non-empty cell-array
 
-                if length(doParam) == grid.nBlocks() && all(cellfun(@iscell, doParam))
+                if length(doParam) == g.nBlocks() && all(cellfun(@iscell, doParam))
                     % doParam is a cell-array of cell-arrays
                     getParam = @(i)doParam{i};
                     return
@@ -116,7 +117,7 @@
 
         function ops = splitOp(obj, op)
             % Splits a matrix operator into a cell-matrix of matrix operators for
-            % each grid.
+            % each g.
             ops = sparse2cell(op, obj.NNN);
         end
 
@@ -143,6 +144,27 @@
             end
         end
 
+        function op = getBoundaryQuadrature(obj, boundary)
+            opName = 'H';
+            switch class(boundary)
+                case 'cell'
+                    localOpName = [opName '_' boundary{2}];
+                    blockId = boundary{1};
+                    op = obj.diffOps{blockId}.(localOpName);
+
+                    return
+                case 'multiblock.BoundaryGroup'
+                    N = length(boundary);
+                    H_bm = cell(N,N);
+                    for i = 1:N
+                        H_bm{i,i} = obj.getBoundaryQuadrature(boundary{i});
+                    end
+                    op = blockmatrix.toMatrix(H_bm);
+                otherwise
+                    error('Unknown boundary indentifier')
+            end
+        end
+
         % Creates the closure and penalty matrix for a given boundary condition,
         %    boundary -- the name of the boundary on the form {id,name} where
         %                id is the number of a block and name is the name of a
@@ -194,6 +216,7 @@
                 p{I} = blockPenalty;
                 penalty = blockmatrix.toMatrix(p);
             else
+                % TODO: used by beam equation, should be eliminated. SHould only set one BC per call
                 for i = 1:length(blockPenalty)
                     div{2} = size(blockPenalty{i}, 2); % Penalty is a column vector
                     p = blockmatrix.zero(div);