Mercurial > repos > public > sbplib
diff +scheme/Utux2d.m @ 1072:6468a5f6ec79 feature/grids/LaplaceSquared
Merge with default
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 12 Feb 2019 17:12:42 +0100 |
parents | 84200bbae101 |
children | 433c89bf19e0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Utux2d.m Tue Feb 12 17:12:42 2019 +0100 @@ -0,0 +1,305 @@ +classdef Utux2d < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + grid % Grid + order % Order accuracy for the approximation + v0 % Initial data + + a % Wave speed a = [a1, a2]; + % Can either be a constant vector or a cell array of function handles. + + H % Discrete norm + H_x, H_y % Norms in the x and y directions + Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms + H_w, H_e, H_s, H_n % Boundary quadratures + + % Derivatives + Dx, Dy + + % Boundary operators + e_w, e_e, e_s, e_n + + D % Total discrete operator + end + + + methods + function obj = Utux2d(g ,order, opSet, a) + + default_arg('a',1/sqrt(2)*[1, 1]); + default_arg('opSet',@sbp.D2Standard); + + assertType(g, 'grid.Cartesian'); + if iscell(a) + a1 = grid.evalOn(g, a{1}); + a2 = grid.evalOn(g, a{2}); + a = {spdiag(a1), spdiag(a2)}; + else + a = {a(1), a(2)}; + end + + m = g.size(); + m_x = m(1); + m_y = m(2); + m_tot = g.N(); + + xlim = {g.x{1}(1), g.x{1}(end)}; + ylim = {g.x{2}(1), g.x{2}(end)}; + obj.grid = g; + + % Operator sets + ops_x = opSet(m_x, xlim, order); + ops_y = opSet(m_y, ylim, order); + Ix = speye(m_x); + Iy = speye(m_y); + + % Norms + Hx = ops_x.H; + Hy = ops_y.H; + Hxi = ops_x.HI; + Hyi = ops_y.HI; + + obj.H_w = Hy; + obj.H_e = Hy; + obj.H_s = Hx; + obj.H_n = Hx; + obj.H_x = Hx; + obj.H_y = Hy; + obj.H = kron(Hx,Hy); + obj.Hi = kron(Hxi,Hyi); + obj.Hx = kron(Hx,Iy); + obj.Hy = kron(Ix,Hy); + obj.Hxi = kron(Hxi,Iy); + obj.Hyi = kron(Ix,Hyi); + + % Derivatives + Dx = ops_x.D1; + Dy = ops_y.D1; + obj.Dx = kron(Dx,Iy); + obj.Dy = kron(Ix,Dy); + + % Boundary operators + obj.e_w = kr(ops_x.e_l, Iy); + obj.e_e = kr(ops_x.e_r, Iy); + obj.e_s = kr(Ix, ops_y.e_l); + obj.e_n = kr(Ix, ops_y.e_r); + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + obj.a = a; + obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); + + end + % Closure functions return the opertors applied to the own domain to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type) + default_arg('type','dirichlet'); + + sigma = -1; % Scalar penalty parameter + switch boundary + case {'w','W','west','West'} + tau = sigma*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + + case {'s','S','south','South'} + tau = sigma*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + end + penalty = -obj.Hi*tau; + + end + + % type Struct that specifies the interface coupling. + % Fields: + % -- couplingType String, type of interface coupling + % % Default: 'upwind'. Other: 'centered' + % -- interpolation: type of interpolation, default 'none' + % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. + % Default {0,0} gives zero damping. + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + defaultType.couplingType = 'upwind'; + defaultType.interpolation = 'none'; + defaultType.interpolationDamping = {0,0}; + default_struct('type', defaultType); + + switch type.interpolation + case {'none', ''} + [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); + case {'op','OP'} + [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); + otherwise + error('Unknown type of interpolation: %s ', type.interpolation); + end + end + + function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) + couplingType = type.couplingType; + + % Get neighbour boundary operator + e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*e_neighbour'; + end + + end + + function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + % User can request special interpolation operators by specifying type.interpOpSet + default_field(type, 'interpOpSet', @sbp.InterpOpsOP); + + interpOpSet = type.interpOpSet; + couplingType = type.couplingType; + interpolationDamping = type.interpolationDamping; + + % Get neighbour boundary operator + e_neighbour = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary); + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + int_damp_us = interpolationDamping{1}; + int_damp_ds = interpolationDamping{2}; + + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + % Find the number of grid points along the interface + switch boundary + case {'w','e'} + m_u = obj.m(2); + case {'s','n'} + m_u = obj.m(1); + end + m_v = size(e_neighbour, 2); + + % Build interpolation operators + intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); + Iu2v = intOps.Iu2v; + Iv2u = intOps.Iv2u; + + I_local2neighbour_ds = intOps.Iu2v.bad; + I_local2neighbour_us = intOps.Iu2v.good; + I_neighbour2local_ds = intOps.Iv2u.good; + I_neighbour2local_us = intOps.Iv2u.bad; + + I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; + I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; + + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{1}... + *obj.e_w*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{1}... + *obj.e_e*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{2}... + *obj.e_s*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{2}... + *obj.e_n*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; + end + + + end + + % Returns the boundary operator op for the boundary specified by the string boundary. + % op -- string + % boundary -- string + function o = getBoundaryOperator(obj, op, boundary) + assertIsMember(op, {'e'}) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + o = obj.([op, '_', boundary]); + end + + % Returns square boundary quadrature matrix, of dimension + % corresponding to the number of boundary points + % + % boundary -- string + function H_b = getBoundaryQuadrature(obj, boundary) + assertIsMember(boundary, {'w', 'e', 's', 'n'}) + + H_b = obj.(['H_', boundary]); + end + + function N = size(obj) + N = obj.m; + end + + end +end