Mercurial > repos > public > sbplib
diff diracDiscrCurve.m @ 1251:6424745e1b58 feature/volcano
Merge in latest changes from default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 20 Nov 2019 14:26:57 -0800 |
parents | 25efceb0c392 |
children | 663eb90a4559 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/diracDiscrCurve.m Wed Nov 20 14:26:57 2019 -0800 @@ -0,0 +1,63 @@ +% 2-dimensional delta function for single-block curvilinear grid +% x_s: source point coordinate vector, e.g. [x; y] or [x; y; z]. +% g: single-block grid containing the source +% m_order: Number of moment conditions +% s_order: Number of smoothness conditions +% order: Order of SBP derivative approximations +% opSet: Cell array of function handle to opSet generator +function d = diracDiscrCurve(x_s, g, m_order, s_order, order, opSet) + default_arg('order', m_order); + default_arg('opSet', {@sbp.D2Variable, @sbp.D2Variable}); + + dim = length(x_s); + assert(dim == 2, 'diracDiscrCurve: Only implemented for 2d.'); + assertType(g, 'grid.Curvilinear'); + + % Compute Jacobian + J = jacobian(g, opSet, order); + + % Find approximate logical coordinates of point source + X = g.points(); + U = g.logic.points(); + U_interp = scatteredInterpolant(X, U(:,1)); + V_interp = scatteredInterpolant(X, U(:,2)); + uS = U_interp(x_s); + vS = V_interp(x_s); + + % Get quadrature matrices for moment conditions + m = g.size(); + ops_u = opSet{1}(m(1), {0, 1}, order); + ops_v = opSet{2}(m(2), {0, 1}, order); + H_u = ops_u.H; + H_v = ops_v.H; + + % Get delta function for logical grid and scale by Jacobian + d = (1./J).*diracDiscr(g, [uS; vS], m_order, s_order, {H_u, H_v}); +end + +function J = jacobian(g, opSet, order) + m = g.size(); + m_u = m(1); + m_v = m(2); + ops_u = opSet{1}(m_u, {0, 1}, order); + ops_v = opSet{2}(m_v, {0, 1}, order); + I_u = speye(m_u); + I_v = speye(m_v); + + D1_u = ops_u.D1; + D1_v = ops_v.D1; + + Du = kr(D1_u,I_v); + Dv = kr(I_u,D1_v); + + coords = g.points(); + x = coords(:,1); + y = coords(:,2); + + x_u = Du*x; + x_v = Dv*x; + y_u = Du*y; + y_v = Dv*y; + + J = x_u.*y_v - x_v.*y_u; +end