Mercurial > repos > public > sbplib
diff +sbp/+implementations/d1_noneq_minimal_12.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 08 Sep 2016 15:35:45 +0200 |
parents | |
children | bfa130b7abf6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+sbp/+implementations/d1_noneq_minimal_12.m Thu Sep 08 15:35:45 2016 +0200 @@ -0,0 +1,258 @@ +function [D1,H,x,h] = d1_noneq_minimal_12(N,L) + +% L: Domain length +% N: Number of grid points +if(nargin < 2) + L = 1; +end + +% BP: Number of boundary points +% m: Number of nonequidistant spacings +% order: Accuracy of interior stencil +BP = 10; +m = 4; +order = 12; + +%%%% Non-equidistant grid points %%%%% +x0 = 0.0000000000000e+00; +x1 = 4.6552112904489e-01; +x2 = 1.4647984306493e+00; +x3 = 2.7620429464763e+00; +x4 = 4.0000000000000e+00; +x5 = 5.0000000000000e+00; +x6 = 6.0000000000000e+00; +x7 = 7.0000000000000e+00; +x8 = 8.0000000000000e+00; +x9 = 9.0000000000000e+00; +x10 = 1.0000000000000e+01; + +xb = zeros(m+1,1); +for i = 0:m + xb(i+1) = eval(['x' num2str(i)]); +end +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Compute h %%%%%%%%%% +h = L/(2*xb(end) + N-1-2*m); +%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Define grid %%%%%%%% +x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; +%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Norm matrix %%%%%%%% +P = zeros(BP,1); +%#ok<*NASGU> +P0 = 1.3013597111750e-01; +P1 = 7.6146045079020e-01; +P2 = 1.1984222247012e+00; +P3 = 1.3340123109301e+00; +P4 = 1.0951811473364e+00; +P5 = 9.7569096377130e-01; +P6 = 1.0061945410831e+00; +P7 = 9.9874339446564e-01; +P8 = 1.0001702615573e+00; +P9 = 9.9998873424721e-01; + +for i = 0:BP-1 + P(i+1) = eval(['P' num2str(i)]); +end + +H = ones(N,1); +H(1:BP) = P; +H(end-BP+1:end) = flip(P); +H = spdiags(h*H,0,N,N); +%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Q matrix %%%%%%%%%%% + +% interior stencil +switch order + case 2 + d = [-1/2,0,1/2]; + case 4 + d = [1/12,-2/3,0,2/3,-1/12]; + case 6 + d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; + case 8 + d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; + case 10 + d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; + case 12 + d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; +end +d = repmat(d,N,1); +Q = spdiags(d,-order/2:order/2,N,N); + +% Boundaries +Q0_0 = -5.0000000000000e-01; +Q0_1 = 6.7603132599815e-01; +Q0_2 = -2.6781065957921e-01; +Q0_3 = 1.4050310470012e-01; +Q0_4 = -5.4072653004710e-02; +Q0_5 = -1.1876984028213e-02; +Q0_6 = 2.6300694680362e-02; +Q0_7 = -9.8077210531438e-03; +Q0_8 = 4.2848959311712e-04; +Q0_9 = 3.0440269352791e-04; +Q0_10 = 0.0000000000000e+00; +Q0_11 = 0.0000000000000e+00; +Q0_12 = 0.0000000000000e+00; +Q0_13 = 0.0000000000000e+00; +Q0_14 = 0.0000000000000e+00; +Q0_15 = 0.0000000000000e+00; +Q1_0 = -6.7603132599815e-01; +Q1_1 = 0.0000000000000e+00; +Q1_2 = 9.5204118058043e-01; +Q1_3 = -4.1306598236120e-01; +Q1_4 = 1.5442577883533e-01; +Q1_5 = 2.6535212157067e-02; +Q1_6 = -6.7869317213141e-02; +Q1_7 = 2.6431850942376e-02; +Q1_8 = -1.8383496124689e-03; +Q1_9 = -6.2904733024363e-04; +Q1_10 = 0.0000000000000e+00; +Q1_11 = 0.0000000000000e+00; +Q1_12 = 0.0000000000000e+00; +Q1_13 = 0.0000000000000e+00; +Q1_14 = 0.0000000000000e+00; +Q1_15 = 0.0000000000000e+00; +Q2_0 = 2.6781065957921e-01; +Q2_1 = -9.5204118058043e-01; +Q2_2 = 0.0000000000000e+00; +Q2_3 = 9.4424869445124e-01; +Q2_4 = -3.0369922793820e-01; +Q2_5 = -1.7036409572828e-02; +Q2_6 = 9.7546158402857e-02; +Q2_7 = -4.2534720340735e-02; +Q2_8 = 5.3471186513813e-03; +Q2_9 = 3.5890734751923e-04; +Q2_10 = 0.0000000000000e+00; +Q2_11 = 0.0000000000000e+00; +Q2_12 = 0.0000000000000e+00; +Q2_13 = 0.0000000000000e+00; +Q2_14 = 0.0000000000000e+00; +Q2_15 = 0.0000000000000e+00; +Q3_0 = -1.4050310470012e-01; +Q3_1 = 4.1306598236120e-01; +Q3_2 = -9.4424869445124e-01; +Q3_3 = 0.0000000000000e+00; +Q3_4 = 8.1369662782755e-01; +Q3_5 = -8.4027084126181e-02; +Q3_6 = -1.0721180825279e-01; +Q3_7 = 6.1098180874949e-02; +Q3_8 = -1.2618762739267e-02; +Q3_9 = 7.4866320589496e-04; +Q3_10 = 0.0000000000000e+00; +Q3_11 = 0.0000000000000e+00; +Q3_12 = 0.0000000000000e+00; +Q3_13 = 0.0000000000000e+00; +Q3_14 = 0.0000000000000e+00; +Q3_15 = 0.0000000000000e+00; +Q4_0 = 5.4072653004710e-02; +Q4_1 = -1.5442577883533e-01; +Q4_2 = 3.0369922793820e-01; +Q4_3 = -8.1369662782755e-01; +Q4_4 = 0.0000000000000e+00; +Q4_5 = 6.8140317057259e-01; +Q4_6 = -5.0090848997730e-02; +Q4_7 = -3.2156238350691e-02; +Q4_8 = 1.2270208460707e-02; +Q4_9 = -8.9539078453821e-04; +Q4_10 = -1.8037518037522e-04; +Q4_11 = 0.0000000000000e+00; +Q4_12 = 0.0000000000000e+00; +Q4_13 = 0.0000000000000e+00; +Q4_14 = 0.0000000000000e+00; +Q4_15 = 0.0000000000000e+00; +Q5_0 = 1.1876984028213e-02; +Q5_1 = -2.6535212157067e-02; +Q5_2 = 1.7036409572828e-02; +Q5_3 = 8.4027084126181e-02; +Q5_4 = -6.8140317057259e-01; +Q5_5 = 0.0000000000000e+00; +Q5_6 = 7.3535220394540e-01; +Q5_7 = -1.7565390898074e-01; +Q5_8 = 4.5853976429252e-02; +Q5_9 = -1.2971393808506e-02; +Q5_10 = 2.5974025974031e-03; +Q5_11 = -1.8037518037522e-04; +Q5_12 = 0.0000000000000e+00; +Q5_13 = 0.0000000000000e+00; +Q5_14 = 0.0000000000000e+00; +Q5_15 = 0.0000000000000e+00; +Q6_0 = -2.6300694680362e-02; +Q6_1 = 6.7869317213141e-02; +Q6_2 = -9.7546158402857e-02; +Q6_3 = 1.0721180825279e-01; +Q6_4 = 5.0090848997730e-02; +Q6_5 = -7.3535220394540e-01; +Q6_6 = 0.0000000000000e+00; +Q6_7 = 8.2185236816776e-01; +Q6_8 = -2.4842386107781e-01; +Q6_9 = 7.6038690915127e-02; +Q6_10 = -1.7857142857146e-02; +Q6_11 = 2.5974025974031e-03; +Q6_12 = -1.8037518037522e-04; +Q6_13 = 0.0000000000000e+00; +Q6_14 = 0.0000000000000e+00; +Q6_15 = 0.0000000000000e+00; +Q7_0 = 9.8077210531438e-03; +Q7_1 = -2.6431850942376e-02; +Q7_2 = 4.2534720340735e-02; +Q7_3 = -6.1098180874949e-02; +Q7_4 = 3.2156238350691e-02; +Q7_5 = 1.7565390898074e-01; +Q7_6 = -8.2185236816776e-01; +Q7_7 = 0.0000000000000e+00; +Q7_8 = 8.5207110387533e-01; +Q7_9 = -2.6676625654053e-01; +Q7_10 = 7.9365079365093e-02; +Q7_11 = -1.7857142857146e-02; +Q7_12 = 2.5974025974031e-03; +Q7_13 = -1.8037518037522e-04; +Q7_14 = 0.0000000000000e+00; +Q7_15 = 0.0000000000000e+00; +Q8_0 = -4.2848959311712e-04; +Q8_1 = 1.8383496124689e-03; +Q8_2 = -5.3471186513813e-03; +Q8_3 = 1.2618762739267e-02; +Q8_4 = -1.2270208460707e-02; +Q8_5 = -4.5853976429252e-02; +Q8_6 = 2.4842386107781e-01; +Q8_7 = -8.5207110387533e-01; +Q8_8 = 0.0000000000000e+00; +Q8_9 = 8.5702210251244e-01; +Q8_10 = -2.6785714285718e-01; +Q8_11 = 7.9365079365093e-02; +Q8_12 = -1.7857142857146e-02; +Q8_13 = 2.5974025974031e-03; +Q8_14 = -1.8037518037522e-04; +Q8_15 = 0.0000000000000e+00; +Q9_0 = -3.0440269352791e-04; +Q9_1 = 6.2904733024363e-04; +Q9_2 = -3.5890734751923e-04; +Q9_3 = -7.4866320589496e-04; +Q9_4 = 8.9539078453821e-04; +Q9_5 = 1.2971393808506e-02; +Q9_6 = -7.6038690915127e-02; +Q9_7 = 2.6676625654053e-01; +Q9_8 = -8.5702210251244e-01; +Q9_9 = 0.0000000000000e+00; +Q9_10 = 8.5714285714289e-01; +Q9_11 = -2.6785714285718e-01; +Q9_12 = 7.9365079365093e-02; +Q9_13 = -1.7857142857146e-02; +Q9_14 = 2.5974025974031e-03; +Q9_15 = -1.8037518037522e-04; +for i = 1:BP + for j = 1:BP + Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); + Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); + end +end +%%%%%%%%%%%%%%%%%%%%%%%%%%% + +%%%% Difference operator %% +D1 = H\Q; +%%%%%%%%%%%%%%%%%%%%%%%%%%% \ No newline at end of file