Mercurial > repos > public > sbplib
diff +scheme/Wave2dCurve.m @ 820:501750fbbfdb
Merge with feature/grids
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 07 Sep 2018 14:40:58 +0200 |
parents | 4e266dfe9edc |
children | 459eeb99130f |
line wrap: on
line diff
--- a/+scheme/Wave2dCurve.m Fri Sep 07 14:39:38 2018 +0200 +++ b/+scheme/Wave2dCurve.m Fri Sep 07 14:40:58 2018 +0200 @@ -2,9 +2,9 @@ properties m % Number of points in each direction, possibly a vector h % Grid spacing - u,v % Grid - x,y % Values of x and y for each grid point - X,Y % Grid point locations as matrices + + grid + order % Order accuracy for the approximation D % non-stabalized scheme operator @@ -26,24 +26,32 @@ du_n, dv_n gamm_u, gamm_v lambda + + Dx, Dy % Physical derivatives + + x_u + x_v + y_u + y_v end methods - function obj = Wave2dCurve(m,ti,order,c,opSet) + function obj = Wave2dCurve(g ,order, c, opSet) default_arg('opSet',@sbp.D2Variable); default_arg('c', 1); - if length(m) == 1 - m = [m m]; - end + warning('Use LaplaceCruveilinear instead') + assert(isa(g, 'grid.Curvilinear')) + + m = g.size(); m_u = m(1); m_v = m(2); - m_tot = m_u*m_v; + m_tot = g.N(); - [u, h_u] = util.get_grid(0, 1, m_u); - [v, h_v] = util.get_grid(0, 1, m_v); - + h = g.scaling(); + h_u = h(1); + h_v = h(2); % Operators ops_u = opSet(m_u, {0, 1}, order); @@ -52,66 +60,64 @@ I_u = speye(m_u); I_v = speye(m_v); - D1_u = sparse(ops_u.D1); + D1_u = ops_u.D1; D2_u = ops_u.D2; - H_u = sparse(ops_u.H); - Hi_u = sparse(ops_u.HI); - % M_u = sparse(ops_u.M); - e_l_u = sparse(ops_u.e_l); - e_r_u = sparse(ops_u.e_r); - d1_l_u = sparse(ops_u.d1_l); - d1_r_u = sparse(ops_u.d1_r); + H_u = ops_u.H; + Hi_u = ops_u.HI; + e_l_u = ops_u.e_l; + e_r_u = ops_u.e_r; + d1_l_u = ops_u.d1_l; + d1_r_u = ops_u.d1_r; - D1_v = sparse(ops_v.D1); + D1_v = ops_v.D1; D2_v = ops_v.D2; - H_v = sparse(ops_v.H); - Hi_v = sparse(ops_v.HI); - % M_v = sparse(ops_v.M); - e_l_v = sparse(ops_v.e_l); - e_r_v = sparse(ops_v.e_r); - d1_l_v = sparse(ops_v.d1_l); - d1_r_v = sparse(ops_v.d1_r); + H_v = ops_v.H; + Hi_v = ops_v.HI; + e_l_v = ops_v.e_l; + e_r_v = ops_v.e_r; + d1_l_v = ops_v.d1_l; + d1_r_v = ops_v.d1_r; + + Du = kr(D1_u,I_v); + Dv = kr(I_u,D1_v); % Metric derivatives - [X,Y] = ti.map(u,v); + coords = g.points(); + x = coords(:,1); + y = coords(:,2); - [x_u,x_v] = gridDerivatives(X,D1_u,D1_v); - [y_u,y_v] = gridDerivatives(Y,D1_u,D1_v); - - + x_u = Du*x; + x_v = Dv*x; + y_u = Du*y; + y_v = Dv*y; J = x_u.*y_v - x_v.*y_u; - a11 = 1./J .* (x_v.^2 + y_v.^2); %% GÖR SOM MATRISER + a11 = 1./J .* (x_v.^2 + y_v.^2); a12 = -1./J .* (x_u.*x_v + y_u.*y_v); a22 = 1./J .* (x_u.^2 + y_u.^2); lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); - dof_order = reshape(1:m_u*m_v,m_v,m_u); + % Assemble full operators + L_12 = spdiags(a12, 0, m_tot, m_tot); + Duv = Du*L_12*Dv; + Dvu = Dv*L_12*Du; Duu = sparse(m_tot); Dvv = sparse(m_tot); + ind = grid.funcToMatrix(g, 1:m_tot); for i = 1:m_v - D = D2_u(a11(i,:)); - p = dof_order(i,:); + D = D2_u(a11(ind(:,i))); + p = ind(:,i); Duu(p,p) = D; end for i = 1:m_u - D = D2_v(a22(:,i)); - p = dof_order(:,i); + D = D2_v(a22(ind(i,:))); + p = ind(i,:); Dvv(p,p) = D; end - L_12 = spdiags(a12(:),0,m_tot,m_tot); - Du = kr(D1_u,I_v); - Dv = kr(I_u,D1_v); - - Duv = Du*L_12*Dv; - Dvu = Dv*L_12*Du; - - - obj.H = kr(H_u,H_v); obj.Hi = kr(Hi_u,Hi_v); obj.Hu = kr(H_u,I_v); @@ -119,7 +125,6 @@ obj.Hiu = kr(Hi_u,I_v); obj.Hiv = kr(I_u,Hi_v); - % obj.M = kr(M_u,H_v)+kr(H_u,M_v); obj.e_w = kr(e_l_u,I_v); obj.e_e = kr(e_r_u,I_v); obj.e_s = kr(I_u,e_l_v); @@ -133,28 +138,30 @@ obj.du_n = (obj.e_n'*Du)'; obj.dv_n = kr(I_u,d1_r_v); + obj.x_u = x_u; + obj.x_v = x_v; + obj.y_u = y_u; + obj.y_v = y_v; + obj.m = m; obj.h = [h_u h_v]; obj.order = order; - + obj.grid = g; obj.c = c; - obj.J = spdiags(J(:),0,m_tot,m_tot); - obj.Ji = spdiags(1./J(:),0,m_tot,m_tot); + obj.J = spdiags(J, 0, m_tot, m_tot); + obj.Ji = spdiags(1./J, 0, m_tot, m_tot); obj.a11 = a11; obj.a12 = a12; obj.a22 = a22; obj.D = obj.Ji*c^2*(Duu + Duv + Dvu + Dvv); - obj.u = u; - obj.v = v; - obj.X = X; - obj.Y = Y; - obj.x = X(:); - obj.y = Y(:); obj.lambda = lambda; - obj.gamm_u = h_u*ops_u.borrowing.M.S; - obj.gamm_v = h_v*ops_v.borrowing.M.S; + obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; + obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; + + obj.gamm_u = h_u*ops_u.borrowing.M.d1; + obj.gamm_v = h_v*ops_v.borrowing.M.d1; end @@ -165,12 +172,11 @@ % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. - function [closure, penalty] = boundary_condition(obj,boundary,type,data) + function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) default_arg('type','neumann'); - default_arg('data',0); + default_arg('parameter', []); - [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv] = obj.get_boundary_ops(boundary); - + [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv , ~, ~, ~, scale_factor] = obj.get_boundary_ops(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} @@ -190,28 +196,19 @@ b2 = gamm*u.lambda./u.a22.^2; tau = -1./b1 - 1./b2; - tau = tuning * spdiag(tau(:)); - sig1 = 1/2; + tau = tuning * spdiag(tau); + sig1 = 1; penalty_parameter_1 = halfnorm_inv_n*(tau + sig1*halfnorm_inv_t*F*e'*halfnorm_t)*e; closure = obj.Ji*obj.c^2 * penalty_parameter_1*e'; - pp = -obj.Ji*obj.c^2 * penalty_parameter_1; - switch class(data) - case 'double' - penalty = pp*data; - case 'function_handle' - penalty = @(t)pp*data(t); - otherwise - error('Weird data argument!') - end + penalty = -obj.Ji*obj.c^2 * penalty_parameter_1; % Neumann boundary condition case {'N','n','neumann'} c = obj.c; - a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); d = (a_n * d_n' + a_t*d_t')'; @@ -221,16 +218,24 @@ tau = c.^2 * obj.Ji*(tau1*e + tau2*d); closure = halfnorm_inv*tau*d'; + penalty = -halfnorm_inv*tau; - pp = halfnorm_inv*tau; - switch class(data) - case 'double' - penalty = pp*data; - case 'function_handle' - penalty = @(t)pp*data(t); - otherwise - error('Weird data argument!') - end + % Characteristic boundary condition + case {'characteristic', 'char', 'c'} + default_arg('parameter', 1); + beta = parameter; + c = obj.c; + + a_n = spdiags(coeff_n,0,length(coeff_n),length(coeff_n)); + a_t = spdiags(coeff_t,0,length(coeff_t),length(coeff_t)); + d = s*(a_n * d_n' + a_t*d_t')'; % outward facing normal derivative + + tau = -c.^2 * 1/beta*obj.Ji*e; + + warning('is this right?! /c?') + closure{1} = halfnorm_inv*tau/c*spdiag(scale_factor)*e'; + closure{2} = halfnorm_inv*tau*beta*d'; + penalty = -halfnorm_inv*tau; % Unknown, boundary condition otherwise @@ -263,7 +268,7 @@ b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; tau = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); - tau = tuning * spdiag(tau(:)); + tau = tuning * spdiag(tau); sig1 = 1/2; sig2 = -1/2; @@ -279,10 +284,12 @@ % The right boundary is considered the positive boundary % % I -- the indecies of the boundary points in the grid matrix - function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I] = get_boundary_ops(obj,boundary) + function [e, d_n, d_t, coeff_n, coeff_t, s, gamm, halfnorm_inv_n, halfnorm_inv_t, halfnorm_t, I, scale_factor] = get_boundary_ops(obj, boundary) - gridMatrix = zeros(obj.m(2),obj.m(1)); - gridMatrix(:) = 1:numel(gridMatrix); + % gridMatrix = zeros(obj.m(2),obj.m(1)); + % gridMatrix(:) = 1:numel(gridMatrix); + + ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); switch boundary case 'w' @@ -291,36 +298,40 @@ d_t = obj.dv_w; s = -1; - I = gridMatrix(:,1); + I = ind(1,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); + scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 'e' e = obj.e_e; d_n = obj.du_e; d_t = obj.dv_e; s = 1; - I = gridMatrix(:,end); + I = ind(end,:); coeff_n = obj.a11(I); coeff_t = obj.a12(I); + scale_factor = sqrt(obj.x_v(I).^2 + obj.y_v(I).^2); case 's' e = obj.e_s; d_n = obj.dv_s; d_t = obj.du_s; s = -1; - I = gridMatrix(1,:)'; + I = ind(:,1)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); + scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); case 'n' e = obj.e_n; d_n = obj.dv_n; d_t = obj.du_n; s = 1; - I = gridMatrix(end,:)'; + I = ind(:,end)'; coeff_n = obj.a22(I); coeff_t = obj.a12(I); + scale_factor = sqrt(obj.x_u(I).^2 + obj.y_u(I).^2); otherwise error('No such boundary: boundary = %s',boundary); end @@ -343,15 +354,6 @@ N = prod(obj.m); end - end - methods(Static) - % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u - % and bound_v of scheme schm_v. - % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') - function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) - [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); - [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); - end end end \ No newline at end of file