Mercurial > repos > public > sbplib
diff +scheme/Beam.m @ 820:501750fbbfdb
Merge with feature/grids
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 07 Sep 2018 14:40:58 +0200 |
parents | 4ced7d47bd1f |
children | 459eeb99130f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Beam.m Fri Sep 07 14:40:58 2018 +0200 @@ -0,0 +1,263 @@ +classdef Beam < scheme.Scheme + properties + order % Order accuracy for the approximation + grid + + D % non-stabalized scheme operator + alpha + + h + H % Discrete norm + Hi + + e_l, e_r + d1_l, d1_r + d2_l, d2_r + d3_l, d3_r + gamm + delt + alphaII + alphaIII + + opt + end + + methods + function obj = Beam(grid, order, alpha, opsGen, opt) + default_arg('alpha', -1); + + % default_arg('opsGen', @sbp.D4); + default_arg('opsGen', @sbp.D4Variable); % Supposed to be better + + opt_default.interface_l.tuning = 1.1; + opt_default.interface_l.tau = []; + opt_default.interface_l.sig = []; + opt_default.interface_r.tuning = 1.1; + opt_default.interface_r.tau = []; + opt_default.interface_r.sig = []; + default_struct('opt', opt_default); + + if ~isa(grid, 'grid.Cartesian') || grid.D() ~= 1 + error('Grid must be 1d cartesian'); + end + + obj.grid = grid; + obj.order = order; + obj.alpha = alpha; + + m = grid.m; + h = grid.scaling(); + + x_lim = {grid.x{1}(1), grid.x{1}(end)}; + ops = opsGen(m, x_lim, order); + + D4 = ops.D4; + obj.H = ops.H; + obj.Hi = ops.HI; + obj.e_l = ops.e_l; + obj.e_r = ops.e_r; + obj.d1_l = ops.d1_l; + obj.d1_r = ops.d1_r; + obj.d2_l = ops.d2_l; + obj.d2_r = ops.d2_r; + obj.d3_l = ops.d3_l; + obj.d3_r = ops.d3_r; + + obj.D = alpha*D4; + + alphaII = ops.borrowing.N.S2/2; + alphaIII = ops.borrowing.N.S3/2; + + obj.gamm = h*alphaII; + obj.delt = h^3*alphaIII; + obj.alphaII = alphaII; + obj.alphaIII = alphaIII; + obj.h = h; + obj.opt = opt; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type) + default_arg('type','dn'); + + [e, d1, d2, d3, s] = obj.get_boundary_ops(boundary); + gamm = obj.gamm; + delt = obj.delt; + + + % TODO: Can this be simplifed? Can I handle conditions on u on its own, u_x on its own ... + + switch type + case {'dn', 'clamped'} % Dirichlet-neumann boundary condition + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + % tuning = 2; + tuning = 1.1; + + tau1 = tuning * alpha/delt; + tau4 = s*alpha; + + sig2 = tuning * alpha/gamm; + sig3 = -s*alpha; + + tau = tau1*e+tau4*d3; + sig = sig2*d1+sig3*d2; + + closure = obj.Hi*(tau*e' + sig*d1'); + + penalty{1} = -obj.Hi*tau; + penalty{2} = -obj.Hi*sig; + + + case {'free'} + a = obj.alpha; + + tau = s*a*d1; + sig = -s*a*e; + + closure = obj.Hi*(tau*d2' + sig*d3'); + penalty{1} = -obj.Hi*tau; + penalty{1} = -obj.Hi*sig; + + case 'e' + alpha = obj.alpha; + tuning = 1.1; + + tau1 = tuning * alpha/delt; + tau4 = s*alpha; + + tau = tau1*e+tau4*d3; + + closure = obj.Hi*tau*e'; + penalty = -obj.Hi*tau; + case 'd1' + alpha = obj.alpha; + + tuning = 1.1; + + sig2 = tuning * alpha/gamm; + sig3 = -s*alpha; + + sig = sig2*d1+sig3*d2; + + closure = obj.Hi*sig*d1'; + penalty = -obj.Hi*sig; + + case 'd2' + a = obj.alpha; + + tau = s*a*d1; + + closure = obj.Hi*tau*d2'; + penalty = -obj.Hi*tau; + case 'd3' + a = obj.alpha; + + sig = -s*a*e; + + closure = obj.Hi*sig*d3'; + penalty = -obj.Hi*sig; + + otherwise % Unknown, boundary condition + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d1_u,d2_u,d3_u,s_u] = obj.get_boundary_ops(boundary); + [e_v,d1_v,d2_v,d3_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + + switch boundary + case 'l' + interface_opt = obj.opt.interface_l; + case 'r' + interface_opt = obj.opt.interface_r; + end + + + if isempty(interface_opt.tau) && isempty(interface_opt.sig) + gamm_u = obj.gamm; + delt_u = obj.delt; + + gamm_v = neighbour_scheme.gamm; + delt_v = neighbour_scheme.delt; + + tuning = interface_opt.tuning; + + tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; + sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; + else + h_u = obj.h; + h_v = neighbour_scheme.h; + + switch neighbour_boundary + case 'l' + neighbour_interface_opt = neighbour_scheme.opt.interface_l; + case 'r' + neighbour_interface_opt = neighbour_scheme.opt.interface_r; + end + + tau_u = interface_opt.tau; + sig_u = interface_opt.sig; + tau_v = neighbour_interface_opt.tau; + sig_v = neighbour_interface_opt.sig; + + tau1 = tau_u/h_u^3 + tau_v/h_v^3; + sig2 = sig_u/h_u + sig_v/h_v; + end + + tau4 = s_u*alpha_u/2; + sig3 = -s_u*alpha_u/2; + phi2 = s_u*1/2; + psi1 = -s_u*1/2; + + tau = tau1*e_u + tau4*d3_u; + sig = sig2*d1_u + sig3*d2_u ; + phi = phi2*d1_u ; + psi = psi1*e_u ; + + closure = obj.Hi*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); + penalty = -obj.Hi*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); + end + + % Returns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e, d1, d2, d3, s] = get_boundary_ops(obj,boundary) + switch boundary + case 'l' + e = obj.e_l; + d1 = obj.d1_l; + d2 = obj.d2_l; + d3 = obj.d3_l; + s = -1; + case 'r' + e = obj.e_r; + d1 = obj.d1_r; + d2 = obj.d2_r; + d3 = obj.d3_r; + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = obj.grid.N; + end + + end +end