Mercurial > repos > public > sbplib
diff +sbp/D1Gauss.m @ 405:4d9d8064e58b feature/SBPInTimeGauss
Implementation of D1 based on Gauss quadrature formula with 4 nodes.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Thu, 02 Feb 2017 17:05:43 +0100 |
parents | |
children | 42c4f0b545d6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+sbp/D1Gauss.m Thu Feb 02 17:05:43 2017 +0100 @@ -0,0 +1,41 @@ +classdef D1Gauss < sbp.OpSet + % Diagonal-norm SBP operators based on the Gauss quadrature formula + % with m nodes, which is of degree 2m-1. Hence, The operator D1 is + % accurate of order m. + properties + D1 % SBP operator approximating first derivative + H % Norm matrix + HI % H^-1 + Q % Skew-symmetric matrix + e_l % Left boundary operator + e_r % Right boundary operator + m % Number of grid points. + h % Step size + x % grid + borrowing % Struct with borrowing limits for different norm matrices + end + + methods + function obj = D1Gauss(m,lim) + + x_l = lim{1}; + x_r = lim{2}; + L = x_r-x_l; + + switch m + case 4 + [obj.D1,obj.H,obj.x,obj.h,obj.e_l,obj.e_r] = ... + sbp.implementations.d1_gauss_4(m,L); + otherwise + error('Invalid operator order %d.',order); + end + + + obj.x = obj.x + x_l; + obj.HI = inv(obj.H); + obj.Q = obj.H*obj.D1 - obj.e_r*obj.e_r' + obj.e_l*obj.e_l'; + + obj.borrowing = []; + end + end +end