Mercurial > repos > public > sbplib
diff +scheme/Wave2d.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | a8ed986fcf57 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Wave2d.m Thu Sep 17 10:12:50 2015 +0200 @@ -0,0 +1,231 @@ +classdef SchmWave2d < noname.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + x,y % Grid + X,Y % Values of x and y for each grid point + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + M % Derivative norm + alpha + + H % Discrete norm + Hi + H_x, H_y % Norms in the x and y directions + Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + Hi_x, Hi_y + Hix, Hiy + e_w, e_e, e_s, e_n + d1_w, d1_e, d1_s, d1_n + gamm_x, gamm_y + end + + methods + function obj = SchmWave2d(m,xlim,ylim,order,alpha) + default_arg('a',1); + + if length(m) == 1 + m = [m m]; + end + + m_x = m(1); + m_y = m(2); + + [x, h_x] = util.get_grid(xlim{:},m_x); + [y, h_y] = util.get_grid(ylim{:},m_y); + + ops_x = sbp.Ordinary(m_x,h_x,order); + ops_y = sbp.Ordinary(m_y,h_y,order); + + I_x = speye(m_x); + I_y = speye(m_y); + + D2_x = sparse(ops_x.derivatives.D2); + H_x = sparse(ops_x.norms.H); + Hi_x = sparse(ops_x.norms.HI); + M_x = sparse(ops_x.norms.M); + e_l_x = sparse(ops_x.boundary.e_1); + e_r_x = sparse(ops_x.boundary.e_m); + d1_l_x = sparse(ops_x.boundary.S_1); + d1_r_x = sparse(ops_x.boundary.S_m); + + D2_y = sparse(ops_y.derivatives.D2); + H_y = sparse(ops_y.norms.H); + Hi_y = sparse(ops_y.norms.HI); + M_y = sparse(ops_y.norms.M); + e_l_y = sparse(ops_y.boundary.e_1); + e_r_y = sparse(ops_y.boundary.e_m); + d1_l_y = sparse(ops_y.boundary.S_1); + d1_r_y = sparse(ops_y.boundary.S_m); + + D2 = kr(D2_x, I_y) + kr(I_x, D2_y); + obj.H = kr(H_x,H_y); + obj.Hx = kr(H_x,I_y); + obj.Hy = kr(I_x,H_y); + obj.Hix = kr(Hi_x,I_y); + obj.Hiy = kr(I_x,Hi_y); + obj.Hi = kr(Hi_x,Hi_y); + obj.M = kr(M_x,H_y)+kr(H_x,M_y); + obj.e_w = kr(e_l_x,I_y); + obj.e_e = kr(e_r_x,I_y); + obj.e_s = kr(I_x,e_l_y); + obj.e_n = kr(I_x,e_r_y); + obj.d1_w = kr(d1_l_x,I_y); + obj.d1_e = kr(d1_r_x,I_y); + obj.d1_s = kr(I_x,d1_l_y); + obj.d1_n = kr(I_x,d1_r_y); + + obj.m = m; + obj.h = [h_x h_y]; + obj.order = order; + + obj.alpha = alpha; + obj.D = alpha*D2; + obj.x = x; + obj.y = y; + obj.X = kr(x,ones(m_y,1)); + obj.Y = kr(ones(m_x,1),y); + + obj.gamm_x = h_x*ops_x.borrowing.M.S; + obj.gamm_y = h_y*ops_y.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e,d,s,gamm,halfnorm_inv] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','d','dirichlet'} + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + tuning = 1.1; + tau1 = -tuning*alpha/gamm; + tau2 = s*alpha; + + p = tau1*e + tau2*d; + + closure = halfnorm_inv*p*e'; + + pp = halfnorm_inv*p; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + + % Neumann boundary condition + case {'N','n','neumann'} + alpha = obj.alpha; + tau1 = -s*alpha; + tau2 = 0; + tau = tau1*e + tau2*d; + + closure = halfnorm_inv*tau*d'; + + pp = halfnorm_inv*tau; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d_u,s_u,gamm_u, halfnorm_inv] = obj.get_boundary_ops(boundary); + [e_v,d_v,s_v,gamm_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + tuning = 1.1; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) + + tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; + tau2 = s_u*1/2*alpha_u; + sig1 = s_u*(-1/2); + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = halfnorm_inv*( tau*e_u' + sig*alpha_u*d_u'); + penalty = halfnorm_inv*(-tau*e_v' - sig*alpha_v*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d,s,gamm, halfnorm_inv] = get_boundary_ops(obj,boundary) + switch boundary + case 'w' + e = obj.e_w; + d = obj.d1_w; + s = -1; + gamm = obj.gamm_x; + halfnorm_inv = obj.Hix; + case 'e' + e = obj.e_e; + d = obj.d1_e; + s = 1; + gamm = obj.gamm_x; + halfnorm_inv = obj.Hix; + case 's' + e = obj.e_s; + d = obj.d1_s; + s = -1; + gamm = obj.gamm_y; + halfnorm_inv = obj.Hiy; + case 'n' + e = obj.e_n; + d = obj.d1_n; + s = 1; + gamm = obj.gamm_y; + halfnorm_inv = obj.Hiy; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = prod(obj.m); + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file