Mercurial > repos > public > sbplib
diff +scheme/Beam2d.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | d52e5cdb6eff |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Beam2d.m Thu Sep 17 10:12:50 2015 +0200 @@ -0,0 +1,259 @@ +classdef SchmBeam2d < noname.Scheme + properties + m % Number of points in each direction, possibly a vector + N % Number of points total + h % Grid spacing + u,v % Grid + x,y % Values of x and y for each grid point + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + M % Derivative norm + alpha + + H % Discrete norm + Hi + H_x, H_y % Norms in the x and y directions + Hx,Hy % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + Hi_x, Hi_y + Hix, Hiy + e_w, e_e, e_s, e_n + d1_w, d1_e, d1_s, d1_n + d2_w, d2_e, d2_s, d2_n + d3_w, d3_e, d3_s, d3_n + gamm_x, gamm_y + delt_x, delt_y + end + + methods + function obj = SchmBeam2d(m,lim,order,alpha,opsGen) + default_arg('opsGen',@sbp.Higher); + default_arg('a',1); + + if length(m) == 1 + m = [m m]; + end + + m_x = m(1); + m_y = m(2); + + xlim = lim{1}; + ylim = lim{2}; + + [x, h_x] = util.get_grid(xlim{:},m_x); + [y, h_y] = util.get_grid(ylim{:},m_y); + + ops_x = opsGen(m_x,h_x,order); + ops_y = opsGen(m_y,h_y,order); + + I_x = speye(m_x); + I_y = speye(m_y); + + + + + D4_x = sparse(ops_x.derivatives.D4); + H_x = sparse(ops_x.norms.H); + Hi_x = sparse(ops_x.norms.HI); + e_l_x = sparse(ops_x.boundary.e_1); + e_r_x = sparse(ops_x.boundary.e_m); + d1_l_x = sparse(ops_x.boundary.S_1); + d1_r_x = sparse(ops_x.boundary.S_m); + d2_l_x = sparse(ops_x.boundary.S2_1); + d2_r_x = sparse(ops_x.boundary.S2_m); + d3_l_x = sparse(ops_x.boundary.S3_1); + d3_r_x = sparse(ops_x.boundary.S3_m); + + D4_y = sparse(ops_y.derivatives.D4); + H_y = sparse(ops_y.norms.H); + Hi_y = sparse(ops_y.norms.HI); + e_l_y = sparse(ops_y.boundary.e_1); + e_r_y = sparse(ops_y.boundary.e_m); + d1_l_y = sparse(ops_y.boundary.S_1); + d1_r_y = sparse(ops_y.boundary.S_m); + d2_l_y = sparse(ops_y.boundary.S2_1); + d2_r_y = sparse(ops_y.boundary.S2_m); + d3_l_y = sparse(ops_y.boundary.S3_1); + d3_r_y = sparse(ops_y.boundary.S3_m); + + + D4 = kr(D4_x, I_y) + kr(I_x, D4_y); + + % Norms + obj.H = kr(H_x,H_y); + obj.Hx = kr(H_x,I_x); + obj.Hy = kr(I_x,H_y); + obj.Hix = kr(Hi_x,I_y); + obj.Hiy = kr(I_x,Hi_y); + obj.Hi = kr(Hi_x,Hi_y); + + % Boundary operators + obj.e_w = kr(e_l_x,I_y); + obj.e_e = kr(e_r_x,I_y); + obj.e_s = kr(I_x,e_l_y); + obj.e_n = kr(I_x,e_r_y); + obj.d1_w = kr(d1_l_x,I_y); + obj.d1_e = kr(d1_r_x,I_y); + obj.d1_s = kr(I_x,d1_l_y); + obj.d1_n = kr(I_x,d1_r_y); + obj.d2_w = kr(d2_l_x,I_y); + obj.d2_e = kr(d2_r_x,I_y); + obj.d2_s = kr(I_x,d2_l_y); + obj.d2_n = kr(I_x,d2_r_y); + obj.d3_w = kr(d3_l_x,I_y); + obj.d3_e = kr(d3_r_x,I_y); + obj.d3_s = kr(I_x,d3_l_y); + obj.d3_n = kr(I_x,d3_r_y); + + obj.m = m; + obj.h = [h_x h_y]; + obj.order = order; + + obj.alpha = alpha; + obj.D = alpha*D4; + obj.u = x; + obj.v = y; + obj.x = kr(x,ones(m_y,1)); + obj.y = kr(ones(m_x,1),y); + + obj.gamm_x = h_x*ops_x.borrowing.N.S2/2; + obj.delt_x = h_x^3*ops_x.borrowing.N.S3/2; + + obj.gamm_y = h_y*ops_y.borrowing.N.S2/2; + obj.delt_y = h_y^3*ops_y.borrowing.N.S3/2; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty_e,penalty_d] = boundary_condition(obj,boundary,type,data) + default_arg('type','dn'); + default_arg('data',0); + + [e,d1,d2,d3,s,gamm,delt,halfnorm_inv] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet-neumann boundary condition + case {'dn'} + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + tuning = 1.1; + + tau1 = tuning * alpha/delt; + tau4 = s*alpha; + + sig2 = tuning * alpha/gamm; + sig3 = -s*alpha; + + tau = tau1*e+tau4*d3; + sig = sig2*d1+sig3*d2; + + closure = halfnorm_inv*(tau*e' + sig*d1'); + + pp_e = halfnorm_inv*tau; + pp_d = halfnorm_inv*sig; + switch class(data) + case 'double' + penalty_e = pp_e*data; + penalty_d = pp_d*data; + case 'function_handle' + penalty_e = @(t)pp_e*data(t); + penalty_d = @(t)pp_d*data(t); + otherwise + error('Wierd data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); + [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + tuning = 2; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; + % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; + tau4 = s_u*alpha_u/2; + + sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; + sig3 = -s_u*alpha_u/2; + + phi2 = s_u*1/2; + + psi1 = -s_u*1/2; + + tau = tau1*e_u + tau4*d3_u; + sig = sig2*d1_u + sig3*d2_u ; + phi = phi2*d1_u ; + psi = psi1*e_u ; + + closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); + penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) + switch boundary + case 'w' + e = obj.e_w; + d1 = obj.d1_w; + d2 = obj.d2_w; + d3 = obj.d3_w; + s = -1; + gamm = obj.gamm_x; + delt = obj.delt_x; + halfnorm_inv = obj.Hix; + case 'e' + e = obj.e_e; + d1 = obj.d1_e; + d2 = obj.d2_e; + d3 = obj.d3_e; + s = 1; + gamm = obj.gamm_x; + delt = obj.delt_x; + halfnorm_inv = obj.Hix; + case 's' + e = obj.e_s; + d1 = obj.d1_s; + d2 = obj.d2_s; + d3 = obj.d3_s; + s = -1; + gamm = obj.gamm_y; + delt = obj.delt_y; + halfnorm_inv = obj.Hiy; + case 'n' + e = obj.e_n; + d1 = obj.d1_n; + d2 = obj.d2_n; + d3 = obj.d3_n; + s = 1; + gamm = obj.gamm_y; + delt = obj.delt_y; + halfnorm_inv = obj.Hiy; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = prod(obj.m); + end + + end +end