Mercurial > repos > public > sbplib
diff +time/SBPInTimeImplicitFormulation.m @ 1113:47e86b5270ad feature/timesteppers
Change name of property k to dt in time.Timestepper
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 10 Apr 2019 22:40:55 +0200 |
parents | 5df7f99206b2 |
children |
line wrap: on
line diff
--- a/+time/SBPInTimeImplicitFormulation.m Wed Apr 10 22:22:46 2019 +0200 +++ b/+time/SBPInTimeImplicitFormulation.m Wed Apr 10 22:40:55 2019 +0200 @@ -5,7 +5,7 @@ A,B f - k % total time step. + dt % total time step. blockSize % number of points in each block N % Number of components @@ -24,7 +24,7 @@ end methods - function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize) + function obj = SBPInTimeImplicitFormulation(A, B, f, dt, t0, v0, TYPE, order, blockSize) default_arg('TYPE','gauss'); default_arg('f',[]); @@ -46,7 +46,7 @@ obj.f = @(t)sparse(length(v0),1); end - obj.k = k; + obj.dt = dt; obj.blockSize = blockSize; obj.N = length(v0); @@ -56,13 +56,13 @@ %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' - ops = sbp.D2Standard(blockSize,{0,obj.k},order); + ops = sbp.D2Standard(blockSize,{0,obj.dt},order); case 'optimal' - ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); + ops = sbp.D1Nonequidistant(blockSize,{0,obj.dt},order); case 'minimal' - ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); + ops = sbp.D1Nonequidistant(blockSize,{0,obj.dt},order,'minimal'); case 'gauss' - ops = sbp.D1Gauss(blockSize,{0,obj.k}); + ops = sbp.D1Gauss(blockSize,{0,obj.dt}); end I = speye(size(A)); @@ -112,7 +112,7 @@ obj.v = obj.e_T'*w; - obj.t = obj.t + obj.k; + obj.t = obj.t + obj.dt; obj.n = obj.n + 1; end end