diff +time/SBPInTime.m @ 1113:47e86b5270ad feature/timesteppers

Change name of property k to dt in time.Timestepper
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 10 Apr 2019 22:40:55 +0200
parents f5e14e5986b5
children
line wrap: on
line diff
--- a/+time/SBPInTime.m	Wed Apr 10 22:22:46 2019 +0200
+++ b/+time/SBPInTime.m	Wed Apr 10 22:40:55 2019 +0200
@@ -3,7 +3,7 @@
     % Implemented for v_t = A*v + f(t)
     %
     % Each "step" takes one block step and thus advances
-    % k = k_local*(blockSize-1) in time.
+    % dt = k_local*(blockSize-1) in time.
     properties
         M     % System matrix
         L,U,P,Q % LU factorization of M
@@ -12,7 +12,7 @@
         penalty
         f
         k_local % step size within a block
-        k % Time size of a block  k/(blockSize-1) = k_local
+        dt % Time size of a block  dt/(blockSize-1) = k_local
         t
         v
         m
@@ -23,7 +23,7 @@
     end
 
     methods
-        function obj = SBPInTime(A, f, k, t0, v0, TYPE, order, blockSize)
+        function obj = SBPInTime(A, f, dt, t0, v0, TYPE, order, blockSize)
 
             default_arg('TYPE','gauss');
 
@@ -37,8 +37,8 @@
 
             obj.A = A;
             obj.f = f;
-            obj.k_local = k/(blockSize-1);
-            obj.k = k;
+            obj.k_local = dt/(blockSize-1);
+            obj.dt = dt;
             obj.blockSize = blockSize;
             obj.t = t0;
             obj.m = length(v0);
@@ -47,13 +47,13 @@
             %==== Build the time discretization matrix =====%
             switch TYPE
                 case 'equidistant'
-                    ops = sbp.D2Standard(blockSize,{0,obj.k},order);
+                    ops = sbp.D2Standard(blockSize,{0,obj.dt},order);
                 case 'optimal'
-                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order);
+                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.dt},order);
                 case 'minimal'
-                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal');
+                    ops = sbp.D1Nonequidistant(blockSize,{0,obj.dt},order,'minimal');
                 case 'gauss'
-                    ops = sbp.D1Gauss(blockSize,{0,obj.k});
+                    ops = sbp.D1Gauss(blockSize,{0,obj.dt});
             end
 
             D1 = ops.D1;
@@ -99,7 +99,7 @@
                               obj.penalty, obj.f, obj.blockSize,...
                               obj.Et_r,...
                               obj.L, obj.U, obj.P, obj.Q);
-            obj.t = obj.t + obj.k;
+            obj.t = obj.t + obj.dt;
             obj.n = obj.n + 1;
         end
     end