Mercurial > repos > public > sbplib
diff +scheme/Hypsyst3d.m @ 905:459eeb99130f feature/utux2D
Include type as (optional) input parameter in the interface method of all schemes.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 22 Nov 2018 22:03:44 -0800 |
parents | 0fd6561964b0 |
children | b9c98661ff5d |
line wrap: on
line diff
--- a/+scheme/Hypsyst3d.m Thu Nov 22 22:03:06 2018 -0800 +++ b/+scheme/Hypsyst3d.m Thu Nov 22 22:03:44 2018 -0800 @@ -7,11 +7,11 @@ X, Y, Z% Values of x and y for each grid point Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces order % Order accuracy for the approximation - + D % non-stabalized scheme operator A, B, C, E % Symbolic coefficient matrices Aevaluated,Bevaluated,Cevaluated, Eevaluated - + H % Discrete norm Hx, Hy, Hz % Norms in the x, y and z directions Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. @@ -19,8 +19,8 @@ e_w, e_e, e_s, e_n, e_b, e_t params % Parameters for the coeficient matrice end - - + + methods % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Cu_z-Eu function obj = Hypsyst3d(m, lim, order, A, B,C, E, params,operator) @@ -28,11 +28,11 @@ xlim = lim{1}; ylim = lim{2}; zlim = lim{3}; - + if length(m) == 1 m = [m m m]; end - + obj.A = A; obj.B = B; obj.C = C; @@ -41,7 +41,7 @@ m_y = m(2); m_z = m(3); obj.params = params; - + switch operator case 'upwind' ops_x = sbp.D1Upwind(m_x,xlim,order); @@ -52,29 +52,29 @@ ops_y = sbp.D2Standard(m_y,ylim,order); ops_z = sbp.D2Standard(m_z,zlim,order); end - + obj.x = ops_x.x; obj.y = ops_y.x; obj.z = ops_z.x; - + obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1)); obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); - + obj.Yx = kr(obj.y,ones(m_z,1)); obj.Zx = kr(ones(m_y,1),obj.z); obj.Xy = kr(obj.x,ones(m_z,1)); obj.Zy = kr(ones(m_x,1),obj.z); obj.Xz = kr(obj.x,ones(m_y,1)); obj.Yz = kr(ones(m_z,1),obj.y); - + obj.Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); obj.Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); obj.Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); obj.Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); - + obj.n = length(A(obj.params,0,0,0)); - + I_n = speye(obj.n); I_x = speye(m_x); obj.I_x = I_x; @@ -83,31 +83,31 @@ I_z = speye(m_z); obj.I_z = I_z; I_N = kr(I_n,I_x,I_y,I_z); - + obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); obj.Hx = ops_x.H; obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); obj.Hy = ops_y.H; obj.Hzi = kr(I_n, I_x,I_y, ops_z.HI); obj.Hz = ops_z.H; - + obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); - + obj.m = m; obj.h = [ops_x.h ops_y.h ops_x.h]; obj.order = order; - + switch operator case 'upwind' alphaA = max(abs(eig(A(params,obj.x(end),obj.y(end),obj.z(end))))); alphaB = max(abs(eig(B(params,obj.x(end),obj.y(end),obj.z(end))))); alphaC = max(abs(eig(C(params,obj.x(end),obj.y(end),obj.z(end))))); - + Ap = (obj.Aevaluated+alphaA*I_N)/2; Am = (obj.Aevaluated-alphaA*I_N)/2; Dpx = kr(I_n, ops_x.Dp, I_y,I_z); @@ -116,7 +116,7 @@ temp = Ap*Dmx; obj.D = obj.D-temp; clear Ap Am Dpx Dmx - + Bp = (obj.Bevaluated+alphaB*I_N)/2; Bm = (obj.Bevaluated-alphaB*I_N)/2; Dpy = kr(I_n, I_x, ops_y.Dp,I_z); @@ -126,20 +126,20 @@ temp = Bp*Dmy; obj.D = obj.D-temp; clear Bp Bm Dpy Dmy - - + + Cp = (obj.Cevaluated+alphaC*I_N)/2; Cm = (obj.Cevaluated-alphaC*I_N)/2; Dpz = kr(I_n, I_x, I_y,ops_z.Dp); Dmz = kr(I_n, I_x, I_y,ops_z.Dm); - + temp = Cm*Dpz; obj.D = obj.D-temp; temp = Cp*Dmz; obj.D = obj.D-temp; clear Cp Cm Dpz Dmz obj.D = obj.D-obj.Eevaluated; - + case 'standard' D1_x = kr(I_n, ops_x.D1, I_y,I_z); D1_y = kr(I_n, I_x, ops_y.D1,I_z); @@ -149,7 +149,7 @@ error('Opperator not supported'); end end - + % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. @@ -167,15 +167,15 @@ error('No such boundary condition') end end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) error('An interface function does not exist yet'); end - + function N = size(obj) N = obj.m; end - + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) params = obj.params; side = max(length(X),length(Y)); @@ -189,7 +189,7 @@ side = max(length(X),length(Y)); cols = cols/side; end - + ret = cell(rows,cols); for ii = 1:rows for jj = 1:cols @@ -198,10 +198,10 @@ end ret = cell2mat(ret); end - + function [BM] = boundary_matrices(obj,boundary) params = obj.params; - + switch boundary case {'w','W','west'} BM.e_ = obj.e_w; @@ -248,7 +248,7 @@ end BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); end - + % Characteristic bouyndary consitions function [closure, penalty]=boundary_condition_char(obj,BM) side = BM.side; @@ -260,7 +260,7 @@ Hi = BM.Hi; D = BM.D; e_ = BM.e_; - + switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); @@ -276,9 +276,9 @@ penalty = -Hi*e_*V*tau*Vi_minus; end end - + % General boundary condition in the form Lu=g(x) - function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) + function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) side = BM.side; pos = BM.pos; neg = BM.neg; @@ -288,7 +288,7 @@ Hi = BM.Hi; D = BM.D; e_ = BM.e_; - + switch boundary case {'w','W','west'} L = obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); @@ -303,7 +303,7 @@ case {'t','T','top'} L = obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); end - + switch BM.boundpos case {'l'} tau = sparse(obj.n*side,pos); @@ -311,7 +311,7 @@ Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); - + tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; @@ -321,7 +321,7 @@ tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); - + V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); @@ -329,7 +329,7 @@ penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end - + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] @@ -344,13 +344,13 @@ xs = x; ys = y; zs = z; - - + + side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); Viret= zeros(obj.n,side*obj.n); - + for ii=1:obj.n for jj=1:obj.n Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); @@ -358,7 +358,7 @@ Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end - + D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); @@ -366,11 +366,11 @@ Vi= obj.evaluateCoefficientMatrix(Vi,x,y,z); D = obj.evaluateCoefficientMatrix(D,x,y,z); DD = diag(D); - + poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); - + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi= [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];