Mercurial > repos > public > sbplib
diff +scheme/Hypsyst2dCurve.m @ 905:459eeb99130f feature/utux2D
Include type as (optional) input parameter in the interface method of all schemes.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 22 Nov 2018 22:03:44 -0800 |
parents | 9d1fc984f40d |
children | b9c98661ff5d |
line wrap: on
line diff
--- a/+scheme/Hypsyst2dCurve.m Thu Nov 22 22:03:06 2018 -0800 +++ b/+scheme/Hypsyst2dCurve.m Thu Nov 22 22:03:44 2018 -0800 @@ -4,19 +4,19 @@ n % size of system h % Grid spacing X,Y % Values of x and y for each grid point - + J, Ji % Jacobaian and inverse Jacobian xi,eta Xi,Eta - + A,B X_eta, Y_eta X_xi,Y_xi order % Order accuracy for the approximation - + D % non-stabalized scheme operator Ahat, Bhat, E - + H % Discrete norm Hxii,Hetai % Kroneckerd norms in xi and eta. I_xi,I_eta, I_N, onesN @@ -24,93 +24,93 @@ index_w, index_e,index_s,index_n params % Parameters for the coeficient matrice end - - + + methods % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti) default_arg('E', []) xilim = {0 1}; etalim = {0 1}; - + if length(m) == 1 m = [m m]; end obj.params = params; obj.A=A; obj.B=B; - + obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta); obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi); obj.E=@(params,x,y,~,~)E(params,x,y); - + m_xi = m(1); m_eta = m(2); m_tot=m_xi*m_eta; - + ops_xi = sbp.D2Standard(m_xi,xilim,order); ops_eta = sbp.D2Standard(m_eta,etalim,order); - + obj.xi = ops_xi.x; obj.eta = ops_eta.x; - + obj.Xi = kr(obj.xi,ones(m_eta,1)); obj.Eta = kr(ones(m_xi,1),obj.eta); - + obj.n = length(A(obj.params,0,0)); obj.onesN=ones(obj.n); - + obj.index_w=1:m_eta; - obj.index_e=(m_tot-m_e - + obj.index_e=(m_tot-m_e + metric_termsta+1):m_tot; obj.index_s=1:m_eta:(m_tot-m_eta+1); obj.index_n=(m_eta):m_eta:m_tot; - + I_n = eye(obj.n); I_xi = speye(m_xi); obj.I_xi = I_xi; I_eta = speye(m_eta); obj.I_eta = I_eta; - + D1_xi = kr(I_n, ops_xi.D1, I_eta); obj.Hxii = kr(I_n, ops_xi.HI, I_eta); D1_eta = kr(I_n, I_xi, ops_eta.D1); obj.Hetai = kr(I_n, I_xi, ops_eta.HI); - + obj.e_w = kr(I_n, ops_xi.e_l, I_eta); obj.e_e = kr(I_n, ops_xi.e_r, I_eta); obj.e_s = kr(I_n, I_xi, ops_eta.e_l); - obj.e_n = kr(I_n, I_xi, - + obj.e_n = kr(I_n, I_xi, + metric_termsops_eta.e_r); - + [X,Y] = ti.map(obj.xi,obj.eta); - + [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1); [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1); - + obj.X = reshape(X,m_tot,1); obj.Y = reshape(Y,m_tot,1); obj.X_xi = reshape(x_xi,m_tot,1); obj.Y_xi = reshape(y_xi,m_tot,1); obj.X_eta = reshape(x_eta,m_tot,1); obj.Y_eta = reshape(y_eta,m_tot,1); - + Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta); Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi); E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]); - + obj.m = m; obj.h = [ops_xi.h ops_eta.h]; obj.order = order; obj.J = obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi; obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); - + obj.D = obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated; - + end - + % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w',General boundary conditions'n','s'. @@ -127,18 +127,18 @@ error('No such boundary condition') end end - - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundaryGeneral boundary conditions) + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) error('An interface function does not exist yet'); end - + function N = size(obj) N = obj.m; end - + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_) params = obj.params; - + if isa(mat,'function_handle') [rows,cols] = size(mat(params,0,0,0,0)); x_ = kr(obj.onesN,x_); @@ -152,7 +152,7 @@ side = max(length(X),length(Y)); cols = cols/side; end - + ret = cell(rows,cols); for ii = 1:rows for jj = 1:cols @@ -161,7 +161,7 @@ end ret = cell2mat(ret); end - + %Characteristic boundary conditions function [closure, penalty] = boundary_condition_char(obj,boundary) params = obj.params; @@ -169,7 +169,7 @@ Y = obj.Y; xi = obj.xi; eta = obj.eta; - + switch boundary case {'w','W','west'} e_ = obj.e_w; @@ -200,11 +200,11 @@ [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); side = max(length(xi)); end - + pos = signVec(1); zeroval = signVec(2); neg = signVec(3); - + switch boundPos case {'l'} tau = sparse(obj.n*side,pos); @@ -218,10 +218,10 @@ Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); closure = Hi*e_*V*tau*Vi_minus*e_'; penalty = -Hi*e_*V*tau*Vi_minus; - end + end end - - + + % General boundary condition in the form Lu=g(x) function [closure,penalty] = boundary_condition_general(obj,boundary,L) params = obj.params; @@ -229,7 +229,7 @@ Y = obj.Y; xi = obj.xi; eta = obj.eta; - + switch boundary case {'w','W','west'} e_ = obj.e_w; @@ -237,7 +237,7 @@ boundPos = 'l'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); - + Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_w)); xi_x = Ji*obj.Y_eta(obj.index_w); @@ -250,7 +250,7 @@ boundPos = 'r'; Hi = obj.Hxii; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); - + Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_e)); xi_x = Ji*obj.Y_eta(obj.index_e); @@ -263,7 +263,7 @@ boundPos = 'l'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); - + Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_s)); eta_x = Ji*obj.Y_xi(obj.index_s); @@ -276,7 +276,7 @@ boundPos = 'r'; Hi = obj.Hetai; [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); - + Ji_vec = diag(obj.Ji); Ji = diag(Ji_vec(obj.index_n)); eta_x = Ji*obj.Y_xi(obj.index_n); @@ -284,11 +284,11 @@ L = obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]); side = max(length(xi)); end - + pos = signVec(1); zeroval = signVec(2); neg = signVec(3); - + switch boundPos case {'l'} tau = sparse(obj.n*side,pos); @@ -296,7 +296,7 @@ Vi_minus = Vi(pos+1:obj.n*side,:); V_plus = V(:,1:pos); V_minus = V(:,(pos)+1:obj.n*side); - + tau(1:pos,:) = -abs(D(1:pos,1:pos)); R = -inv(L*V_plus)*(L*V_minus); closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; @@ -306,7 +306,7 @@ tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); Vi_plus = Vi(1:pos,:); Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); - + V_plus = V(:,1:pos); V_minus = V(:,(pos+zeroval)+1:obj.n*side); R = -inv(L*V_minus)*(L*V_plus); @@ -314,7 +314,7 @@ penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end - + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign % [d+ ] @@ -329,22 +329,22 @@ else xs_ = 0; end - + if(sum(abs(y_))~= 0) syms ys_; else ys_ = 0; end - + [V, D] = eig(mat(params,xs,ys,xs_,ys_)); Vi = inv(V); syms xs ys xs_ ys_ - + xs = x; ys = y; xs_ = x_; ys_ = y_; - + side = max(length(x),length(y)); Dret = zeros(obj.n,side*obj.n); Vret = zeros(obj.n,side*obj.n); @@ -356,7 +356,7 @@ Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end - + D = sparse(Dret); V = sparse(Vret); Vi = sparse(Viret); @@ -364,11 +364,11 @@ D = obj.evaluateCoefficientMatrix(D,x,y,x_,y_); Vi = obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_); DD = diag(D); - + poseig = (DD>0); zeroeig = (DD==0); negeig = (DD<0); - + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];