diff +scheme/LaplaceCurvilinear.m @ 1197:433c89bf19e0 feature/rv

Merge with default
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 07 Aug 2019 15:23:42 +0200
parents 84200bbae101
children 5ec23b9bf360 d1dad4fbfe22
line wrap: on
line diff
--- a/+scheme/LaplaceCurvilinear.m	Wed Aug 07 13:28:21 2019 +0200
+++ b/+scheme/LaplaceCurvilinear.m	Wed Aug 07 15:23:42 2019 +0200
@@ -238,7 +238,10 @@
             default_arg('type','neumann');
             default_arg('parameter', []);
 
-            [e, d, gamm, H_b, ~] = obj.get_boundary_ops(boundary);
+            e = obj.getBoundaryOperator('e', boundary);
+            d = obj.getBoundaryOperator('d', boundary);
+            H_b = obj.getBoundaryQuadrature(boundary);
+            gamm = obj.getBoundaryBorrowing(boundary);
             switch type
                 % Dirichlet boundary condition
                 case {'D','d','dirichlet'}
@@ -298,8 +301,17 @@
 
             % u denotes the solution in the own domain
             % v denotes the solution in the neighbour domain
-            [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary);
-            [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+            e_u    = obj.getBoundaryOperator('e', boundary);
+            d_u    = obj.getBoundaryOperator('d', boundary);
+            H_b_u = obj.getBoundaryQuadrature(boundary);
+            I_u = obj.getBoundaryIndices(boundary);
+            gamm_u = obj.getBoundaryBorrowing(boundary);
+
+            e_v    = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            d_v    = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary);
+            H_b_v = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary);
+            I_v = neighbour_scheme.getBoundaryIndices(neighbour_boundary);
+            gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary);
 
             u = obj;
             v = neighbour_scheme;
@@ -336,8 +348,18 @@
 
             % u denotes the solution in the own domain
             % v denotes the solution in the neighbour domain
-            [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary);
-            [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+            e_u    = obj.getBoundaryOperator('e', boundary);
+            d_u    = obj.getBoundaryOperator('d', boundary);
+            H_b_u  = obj.getBoundaryQuadrature(boundary);
+            I_u    = obj.getBoundaryIndices(boundary);
+            gamm_u = obj.getBoundaryBorrowing(boundary);
+
+            e_v    = neighbour_scheme.getBoundaryOperator('e', neighbour_boundary);
+            d_v    = neighbour_scheme.getBoundaryOperator('d', neighbour_boundary);
+            H_b_v  = neighbour_scheme.getBoundaryQuadrature(neighbour_boundary);
+            I_v    = neighbour_scheme.getBoundaryIndices(neighbour_boundary);
+            gamm_v = neighbour_scheme.getBoundaryBorrowing(neighbour_boundary);
+
 
             % Find the number of grid points along the interface
             m_u = size(e_u, 2);
@@ -378,37 +400,48 @@
 
         end
 
-        % Returns the boundary ops and sign for the boundary specified by the string boundary.
-        % The right boundary is considered the positive boundary
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op        -- string
+        % boundary  -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(op, {'e', 'd'})
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            o = obj.([op, '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary points
         %
-        %  I -- the indices of the boundary points in the grid matrix
-        function [e, d, gamm, H_b, I] = get_boundary_ops(obj, boundary)
+        % boundary -- string
+        function H_b = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            H_b = obj.(['H_', boundary]);
+        end
+
+        % Returns the indices of the boundary points in the grid matrix
+        % boundary -- string
+        function I = getBoundaryIndices(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
             ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m));
-
             switch boundary
                 case 'w'
-                    e = obj.e_w;
-                    d = obj.d_w;
-                    H_b = obj.H_w;
                     I = ind(1,:);
                 case 'e'
-                    e = obj.e_e;
-                    d = obj.d_e;
-                    H_b = obj.H_e;
                     I = ind(end,:);
                 case 's'
-                    e = obj.e_s;
-                    d = obj.d_s;
-                    H_b = obj.H_s;
                     I = ind(:,1)';
                 case 'n'
-                    e = obj.e_n;
-                    d = obj.d_n;
-                    H_b = obj.H_n;
                     I = ind(:,end)';
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
             end
+        end
+
+        % Returns borrowing constant gamma
+        % boundary -- string
+        function gamm = getBoundaryBorrowing(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
 
             switch boundary
                 case {'w','e'}