diff +scheme/Burgers2d.m @ 1197:433c89bf19e0 feature/rv

Merge with default
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Wed, 07 Aug 2019 15:23:42 +0200
parents 6cb03209f0a7
children
line wrap: on
line diff
--- a/+scheme/Burgers2d.m	Wed Aug 07 13:28:21 2019 +0200
+++ b/+scheme/Burgers2d.m	Wed Aug 07 15:23:42 2019 +0200
@@ -101,17 +101,17 @@
         %       type                is a string specifying the type of boundary condition if there are several.
         function [closure, penalty] = boundary_condition(obj,boundary,type)
             default_arg('type','dirichlet');
-            [e, H_b, index, s] = obj.get_boundary_ops(boundary);
+            s = obj.getBoundarySign(boundary);
+            e = obj.getBoundaryOperator('e', boundary);
+            indices = obj.getBoundaryIndices(boundary);
+            H_1d = obj.getOneDirectionalNorm(boundary);
             switch type
-                % Stable dirchlet-like boundary conditions (u+-abs(u))*u/3
-                % with +- at left/right boundaries in each coordinate direction
                 case {'D', 'd', 'dirichlet', 'Dirichlet'}
-
-                    magnitude = 1/3;
-                    Tau = s*magnitude*obj.Hi*e*H_b/2;
-                    m = length(index);
-                    tau = @(v) Tau*spdiags((v(index)-s*abs(v(index))),0,m,m);
-                    closure = @(v) Tau*((v(index)-s*abs(v(index))).*v(index));
+                    penalty_parameter = 1/3;
+                    Tau = s*penalty_parameter*obj.Hi*e*H_1d/2;
+                    m = obj.grid.m;
+                    tau = @(v) Tau*spdiags((v(indices)-s*abs(v(indices))),0,m(1),m(2));
+                    closure = @(v) Tau*((v(indices)-s*abs(v(indices))).*v(indices));
                     penalty = @(v) -tau(v);
                 otherwise
                     error('No such boundary condition: type = %s',type);
@@ -120,33 +120,66 @@
 
         end
 
-        % Ruturns the boundary ops, half-norm, boundary indices and sign for the boundary specified by the string boundary.
-        % The right boundary for each coordinate direction is considered the positive boundary
-        function [e, H_b, index, s] = get_boundary_ops(obj, boundary)
-            ind = grid.funcToMatrix(obj.grid, 1:obj.grid.N());
+        % Returns the boundary sign. The right boundary is considered the positive boundary
+        % boundary -- string
+        function s = getBoundarySign(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
             switch boundary
-                case {'w', 'W', 'west', 'West'}
-                    e = obj.e_w;
-                    H_b = obj.H_y;
-                    index = ind(1,:);
+                case {'e','n'}
+                    s = 1;
+                case {'w','s'}
                     s = -1;
-                case {'e', 'E', 'east', 'East'}
-                    e = obj.e_e;
-                    H_b = obj.H_y;
-                    index = ind(end,:);
-                    s = 1;
-                case {'s', 'S', 'south', 'South'}
-                    e = obj.e_s;
-                    H_b = obj.H_x;
-                    index = ind(:,1);
-                    s = -1;
-                case {'n', 'N', 'north', 'North'}
-                    e = obj.e_n;
-                    H_b = obj.H_x;
-                    index = ind(:,end);
-                    s = 1;
-                otherwise
-                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        % Returns the boundary operator op for the boundary specified by the string boundary.
+        % op        -- string
+        % boundary  -- string
+        function o = getBoundaryOperator(obj, op, boundary)
+            assertIsMember(op, {'e'})
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            o = obj.([op, '_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function H_b = getBoundaryQuadrature(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            H_b = obj.(['H_', boundary]);
+        end
+
+        % Returns square boundary quadrature matrix, of dimension
+        % corresponding to the number of boundary points
+        %
+        % boundary -- string
+        function H_1d = getOneDirectionalNorm(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+            switch boundary
+                case {'w','e'}
+                    H_1d = obj.H_y;
+                case {'s','n'}
+                    H_1d = obj.H_x;
+            end
+        end
+
+        % Returns the indices of the boundary points in the grid matrix
+        % boundary -- string
+        function I = getBoundaryIndices(obj, boundary)
+            assertIsMember(boundary, {'w', 'e', 's', 'n'})
+
+            ind = grid.funcToMatrix(obj.grid, 1:prod(obj.grid.m));
+            switch boundary
+                case 'w'
+                    I = ind(1,:);
+                case 'e'
+                    I = ind(end,:);
+                case 's'
+                    I = ind(:,1)';
+                case 'n'
+                    I = ind(:,end)';
             end
         end