Mercurial > repos > public > sbplib
diff +sbp/+implementations/d2_noneq_variable_6.m @ 1325:1b0f2415237f feature/D2_boundary_opt
Add variable coefficient boundary-optimized second derivatives.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Sun, 13 Feb 2022 19:32:34 +0100 |
parents | |
children | 855871e0b852 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+sbp/+implementations/d2_noneq_variable_6.m Sun Feb 13 19:32:34 2022 +0100 @@ -0,0 +1,202 @@ +function [H, HI, D1, D2, DI] = d2_noneq_variable_6(N, h, options) + % N: Number of grid points + % h: grid spacing + % options: struct containing options for constructing the operator + % current options are: + % options.stencil_type ('minimal','nonminimal','wide') + % options.AD ('upwind', 'op') + + % BP: Number of boundary points + % order: Accuracy of interior stencil + BP = 6; + order = 6; + + %%%% Norm matrix %%%%%%%% + P = zeros(BP, 1); + P0 = 1.3030223027124e-01; + P1 = 6.8851501587715e-01; + P2 = 9.5166202564389e-01; + P3 = 9.9103890475697e-01; + P4 = 1.0028757074552e+00; + P5 = 9.9950151111941e-01; + + for i = 0:BP - 1 + P(i + 1) = eval(['P' num2str(i)]); + end + + Hv = ones(N, 1); + Hv(1:BP) = P; + Hv(end - BP + 1:end) = flip(P); + Hv = h * Hv; + H = spdiags(Hv, 0, N, N); + HI = spdiags(1 ./ Hv, 0, N, N); + %%%%%%%%%%%%%%%%%%%%%%%%% + + %%%% Q matrix %%%%%%%%%%% + + % interior stencil + d = [-1/60, 3/20, -3/4, 0, 3/4, -3/20, 1/60]; + d = repmat(d, N, 1); + Q = spdiags(d, -order / 2:order / 2, N, N); + + % Boundaries + Q0_0 = -5.0000000000000e-01; + Q0_1 = 6.6042071945824e-01; + Q0_2 = -2.2104152954203e-01; + Q0_3 = 7.6243679810093e-02; + Q0_4 = -1.7298206716724e-02; + Q0_5 = 1.6753369904210e-03; + Q0_6 = 0.0000000000000e+00; + Q0_7 = 0.0000000000000e+00; + Q0_8 = 0.0000000000000e+00; + Q1_0 = -6.6042071945824e-01; + Q1_1 = 0.0000000000000e+00; + Q1_2 = 8.7352798702787e-01; + Q1_3 = -2.6581719253084e-01; + Q1_4 = 5.7458484948314e-02; + Q1_5 = -4.7485599871040e-03; + Q1_6 = 0.0000000000000e+00; + Q1_7 = 0.0000000000000e+00; + Q1_8 = 0.0000000000000e+00; + Q2_0 = 2.2104152954203e-01; + Q2_1 = -8.7352798702787e-01; + Q2_2 = 0.0000000000000e+00; + Q2_3 = 8.1707122038457e-01; + Q2_4 = -1.8881125503769e-01; + Q2_5 = 2.4226492138960e-02; + Q2_6 = 0.0000000000000e+00; + Q2_7 = 0.0000000000000e+00; + Q2_8 = 0.0000000000000e+00; + Q3_0 = -7.6243679810093e-02; + Q3_1 = 2.6581719253084e-01; + Q3_2 = -8.1707122038457e-01; + Q3_3 = 0.0000000000000e+00; + Q3_4 = 7.6798636652679e-01; + Q3_5 = -1.5715532552963e-01; + Q3_6 = 1.6666666666667e-02; + Q3_7 = 0.0000000000000e+00; + Q3_8 = 0.0000000000000e+00; + Q4_0 = 1.7298206716724e-02; + Q4_1 = -5.7458484948314e-02; + Q4_2 = 1.8881125503769e-01; + Q4_3 = -7.6798636652679e-01; + Q4_4 = 0.0000000000000e+00; + Q4_5 = 7.5266872305402e-01; + Q4_6 = -1.5000000000000e-01; + Q4_7 = 1.6666666666667e-02; + Q4_8 = 0.0000000000000e+00; + Q5_0 = -1.6753369904210e-03; + Q5_1 = 4.7485599871040e-03; + Q5_2 = -2.4226492138960e-02; + Q5_3 = 1.5715532552963e-01; + Q5_4 = -7.5266872305402e-01; + Q5_5 = 0.0000000000000e+00; + Q5_6 = 7.5000000000000e-01; + Q5_7 = -1.5000000000000e-01; + Q5_8 = 1.6666666666667e-02; + + for i = 1:BP + + for j = 1:BP + Q(i, j) = eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); + Q(N + 1 - i, N + 1 - j) = -eval(['Q' num2str(i - 1) '_' num2str(j - 1)]); + end + + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%% + + %%% Undivided difference operators %%%% + % Closed with zeros at the first boundary nodes. + m = N; + + DD_3 = (-diag(ones(m - 2, 1), -2) + 3 * diag(ones(m - 1, 1), -1) - 3 * diag(ones(m, 1), 0) + diag(ones(m - 1, 1), 1)); + DD_3(1:5, 1:6) = [0 0 0 0 0 0; 0 0 0 0 0 0; -0.46757024540266021836e1 0.88373748766984018738e1 -0.56477423503490435435e1 0.14860699276772438533e1 0 0; 0 -0.13802450758054908946e1 0.36701915175801340778e1 -0.33643068661005748879e1 0.10743604243259317047e1 0; 0 0 -0.10409288946349185618e1 0.30665535320781497878e1 -0.30329117010471766032e1 0.10072870636039453772e1; ]; + DD_3(m - 3:m, m - 5:m) = [-0.10072870636039453772e1 0.30329117010471766032e1 -0.30665535320781497878e1 0.10409288946349185618e1 0 0; 0 -0.10743604243259317047e1 0.33643068661005748879e1 -0.36701915175801340778e1 0.13802450758054908946e1 0; 0 0 -0.14860699276772438533e1 0.56477423503490435435e1 -0.88373748766984018738e1 0.46757024540266021836e1; 0 0 0 0 0 0; ]; + DD_3 = sparse(DD_3); + + DD_4 = (diag(ones(m - 2, 1), 2) - 4 * diag(ones(m - 1, 1), 1) + 6 * diag(ones(m, 1), 0) - 4 * diag(ones(m - 1, 1), -1) + diag(ones(m - 2, 1), -2)); + DD_4(1:5, 1:7) = [0 0 0 0 0 0 0; 0 0 0 0 0 0 0; 0.57302111593550648941e1 -0.12521994384708052700e2 0.11419402572582197931e2 -0.59442797107089754133e1 0.13166603634797652881e1 0 0; 0 0.14441513881249918393e1 -0.49292485821432017638e1 0.67286137322011497757e1 -0.42974416973037268190e1 0.10539251591207869677e1 0; 0 0 0.10466075357769140419e1 -0.40887380427708663837e1 0.60658234020943532065e1 -0.40291482544157815088e1 0.10054553593153806442e1; ]; + DD_4(m - 4:m, m - 6:m) = [0.10054553593153806442e1 -0.40291482544157815088e1 0.60658234020943532065e1 -0.40887380427708663837e1 0.10466075357769140419e1 0 0; 0 0.10539251591207869677e1 -0.42974416973037268190e1 0.67286137322011497757e1 -0.49292485821432017638e1 0.14441513881249918393e1 0; 0 0 0.13166603634797652881e1 -0.59442797107089754133e1 0.11419402572582197931e2 -0.12521994384708052700e2 0.57302111593550648941e1; 0 0 0 0 0 0 0; 0 0 0 0 0 0 0; ]; + DD_4 = sparse(DD_4); + + DD_5 = (-diag(ones(m - 3, 1), -3) + 5 * diag(ones(m - 2, 1), -2) - 10 * diag(ones(m - 1, 1), -1) + 10 * diag(ones(m, 1), 0) - 5 * diag(ones(m - 1, 1), 1) + diag(ones(m - 2, 1), 2)); + DD_5(1:6, 1:8) = [0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; -0.67194556014531368457e1 0.16377214352871472626e2 -0.19171027475746103125e2 0.14860699276772438533e2 -0.65833018173988264407e1 0.12358712649541552519e1 0 0; 0 -0.14971527633959360324e1 0.61951742553920293904e1 -0.11214356220335249626e2 0.10743604243259317047e2 -0.52696257956039348385e1 0.10423562806837740594e1 0; 0 0 -0.10511702536596915242e1 0.51109225534635829797e1 -0.10109705670157255344e2 0.10072870636039453772e2 -0.50272767965769032212e1 0.10043595308908133377e1; ]; + DD_5(m - 4:m, m - 7:m) = [-0.10043595308908133377e1 0.50272767965769032212e1 -0.10072870636039453772e2 0.10109705670157255344e2 -0.51109225534635829797e1 0.10511702536596915242e1 0 0; 0 -0.10423562806837740594e1 0.52696257956039348385e1 -0.10743604243259317047e2 0.11214356220335249626e2 -0.61951742553920293904e1 0.14971527633959360324e1 0; 0 0 -0.12358712649541552519e1 0.65833018173988264407e1 -0.14860699276772438533e2 0.19171027475746103125e2 -0.16377214352871472626e2 0.67194556014531368457e1; 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0; ]; + DD_5 = sparse(DD_5); + + DD_6 = (diag(ones(m - 3, 1), 3) - 6 * diag(ones(m - 2, 1), 2) + 15 * diag(ones(m - 1, 1), 1) - 20 * diag(ones(m, 1), 0) + 15 * diag(ones(m - 1, 1), -1) - 6 * diag(ones(m - 2, 1), -2) + diag(ones(m - 3, 1), -3)); + DD_6(1:6, 1:9) = [0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0.76591061528436941127e1 -0.20373923615000091397e2 0.28913418478606999359e2 -0.29721398553544877066e2 0.19749905452196479322e2 -0.74152275897249315116e1 0.11881196746227271813e1 0 0; 0 0.15426631885693469226e1 -0.74666187707188589528e1 0.16821534330502874439e2 -0.21487208486518634095e2 0.15808877386811804515e2 -0.62541376841026443562e1 0.10348900354561115264e1 0; 0 0 0.10549863219420430611e1 -0.61331070641562995756e1 0.15164558505235883016e2 -0.20145741272078907544e2 0.15081830389730709664e2 -0.60261571853448800265e1 0.10036303046714514054e1; ]; + DD_6(m - 5:m, m - 8:m) = [0.10036303046714514054e1 -0.60261571853448800265e1 0.15081830389730709664e2 -0.20145741272078907544e2 0.15164558505235883016e2 -0.61331070641562995756e1 0.10549863219420430611e1 0 0; 0 0.10348900354561115264e1 -0.62541376841026443562e1 0.15808877386811804515e2 -0.21487208486518634095e2 0.16821534330502874439e2 -0.74666187707188589528e1 0.15426631885693469226e1 0; 0 0 0.11881196746227271813e1 -0.74152275897249315116e1 0.19749905452196479322e2 -0.29721398553544877066e2 0.28913418478606999359e2 -0.20373923615000091397e2 0.76591061528436941127e1; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; ]; + DD_6 = sparse(DD_6); + + %%%% Difference operators %%% + D1 = H \ Q; + + % Helper functions for constructing D2(c) + % TODO: Consider changing sparse(diag(...)) to spdiags(....) + + % Minimal 7 point stencil width + function D2 = D2_fun_minimal(c) + % Here we add variable diffusion + C1 = sparse(diag(c)); + C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; + C3 = 1/3 * diag(ones(m - 1, 1), -1) + 1/3 * diag(ones(m - 1, 1), 1) + 1/3 * diag(ones(m, 1), 0); C3(1, 3) = 1/3; C3(m, m - 2) = 1/3; + + C2 = sparse(diag(C2 * c)); + C3 = sparse(diag(C3 * c)); + + % Remainder term added to wide second derivative operator + R = (1/3600 / h) * transpose(DD_6) * C1 * DD_6 + (1/600 / h) * transpose(DD_5) * C2 * DD_5 + (1/80 / h) * transpose(DD_4) * C3 * DD_4; + D2 = D1 * C1 * D1 - H \ R; + end + + % Few additional grid point in interior stencil cmp. to minimal + function D2 = D2_fun_nonminimal(c) + % Here we add variable diffusion + C1 = sparse(diag(c)); + C2 = 1/2 * diag(ones(m - 1, 1), -1) + 1/2 * diag(ones(m, 1), 0); C2(1, 2) = 1/2; + + C2 = sparse(diag(C2 * c)); + + % Remainder term added to wide second derivative operator + R = (1/3600 / h) * transpose(DD_6) * C1 * DD_6 + (1/600 / h) * transpose(DD_5) * C2 * DD_5; + D2 = D1 * C1 * D1 - H \ R; + end + + % Wide stencil + function D2 = D2_fun_wide(c) + % Here we add variable diffusion + C1 = sparse(diag(c)); + D2 = D1 * C1 * D1; + end + + switch options.stencil_width + case 'minimal' + D2 = @D2_fun_minimal; + case 'nonminimal' + D2 = @D2_fun_nonminimal; + case 'wide' + D2 = @D2_fun_wide; + otherwise + error('No option %s for stencil width', options.stencil_width) + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%% + + %%%% Artificial dissipation operator %%% + switch options.AD + case 'upwind' + % This is the choice that yield 3rd order Upwind + DI = H \ (transpose(DD_3) * DD_3) * (-1/60); + case 'op' + % This choice will preserve the order of the underlying + % Non-dissipative D1 SBP operator + DI = H \ (transpose(DD_4) * DD_4) * (-1 / (5 * 60)); + % Notice that you can use any negative number instead of (-1/(5*60)) + otherwise + error("Artificial dissipation options '%s' not implemented.", option.AD) + end + + %%%%%%%%%%%%%%%%%%%%%%%%%%% +end \ No newline at end of file