Mercurial > repos > public > sbplib
diff +scheme/Hypsyst2dCurve.m @ 378:18525f1bb941
Merged in feature/hypsyst (pull request #4)
Feature/hypsyst
author | Jonatan Werpers <jonatan.werpers@it.uu.se> |
---|---|
date | Thu, 26 Jan 2017 13:07:51 +0000 |
parents | 9d1fc984f40d |
children | 459eeb99130f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Hypsyst2dCurve.m Thu Jan 26 13:07:51 2017 +0000 @@ -0,0 +1,378 @@ +classdef Hypsyst2dCurve < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + n % size of system + h % Grid spacing + X,Y % Values of x and y for each grid point + + J, Ji % Jacobaian and inverse Jacobian + xi,eta + Xi,Eta + + A,B + X_eta, Y_eta + X_xi,Y_xi + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + Ahat, Bhat, E + + H % Discrete norm + Hxii,Hetai % Kroneckerd norms in xi and eta. + I_xi,I_eta, I_N, onesN + e_w, e_e, e_s, e_n + index_w, index_e,index_s,index_n + params % Parameters for the coeficient matrice + end + + + methods + % Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu + function obj = Hypsyst2dCurve(m, order, A, B, E, params, ti) + default_arg('E', []) + xilim = {0 1}; + etalim = {0 1}; + + if length(m) == 1 + m = [m m]; + end + obj.params = params; + obj.A=A; + obj.B=B; + + obj.Ahat=@(params,x,y,x_eta,y_eta)(A(params,x,y).*y_eta-B(params,x,y).*x_eta); + obj.Bhat=@(params,x,y,x_xi,y_xi)(B(params,x,y).*x_xi-A(params,x,y).*y_xi); + obj.E=@(params,x,y,~,~)E(params,x,y); + + m_xi = m(1); + m_eta = m(2); + m_tot=m_xi*m_eta; + + ops_xi = sbp.D2Standard(m_xi,xilim,order); + ops_eta = sbp.D2Standard(m_eta,etalim,order); + + obj.xi = ops_xi.x; + obj.eta = ops_eta.x; + + obj.Xi = kr(obj.xi,ones(m_eta,1)); + obj.Eta = kr(ones(m_xi,1),obj.eta); + + obj.n = length(A(obj.params,0,0)); + obj.onesN=ones(obj.n); + + obj.index_w=1:m_eta; + obj.index_e=(m_tot-m_e + + metric_termsta+1):m_tot; + obj.index_s=1:m_eta:(m_tot-m_eta+1); + obj.index_n=(m_eta):m_eta:m_tot; + + I_n = eye(obj.n); + I_xi = speye(m_xi); + obj.I_xi = I_xi; + I_eta = speye(m_eta); + obj.I_eta = I_eta; + + D1_xi = kr(I_n, ops_xi.D1, I_eta); + obj.Hxii = kr(I_n, ops_xi.HI, I_eta); + D1_eta = kr(I_n, I_xi, ops_eta.D1); + obj.Hetai = kr(I_n, I_xi, ops_eta.HI); + + obj.e_w = kr(I_n, ops_xi.e_l, I_eta); + obj.e_e = kr(I_n, ops_xi.e_r, I_eta); + obj.e_s = kr(I_n, I_xi, ops_eta.e_l); + obj.e_n = kr(I_n, I_xi, + + metric_termsops_eta.e_r); + + [X,Y] = ti.map(obj.xi,obj.eta); + + [x_xi,x_eta] = gridDerivatives(X,ops_xi.D1,ops_eta.D1); + [y_xi,y_eta] = gridDerivatives(Y,ops_xi.D1, ops_eta.D1); + + obj.X = reshape(X,m_tot,1); + obj.Y = reshape(Y,m_tot,1); + obj.X_xi = reshape(x_xi,m_tot,1); + obj.Y_xi = reshape(y_xi,m_tot,1); + obj.X_eta = reshape(x_eta,m_tot,1); + obj.Y_eta = reshape(y_eta,m_tot,1); + + Ahat_evaluated = obj.evaluateCoefficientMatrix(obj.Ahat, obj.X, obj.Y,obj.X_eta,obj.Y_eta); + Bhat_evaluated = obj.evaluateCoefficientMatrix(obj.Bhat, obj.X, obj.Y,obj.X_xi,obj.Y_xi); + E_evaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,[],[]); + + obj.m = m; + obj.h = [ops_xi.h ops_eta.h]; + obj.order = order; + obj.J = obj.X_xi.*obj.Y_eta - obj.X_eta.*obj.Y_xi; + obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); + + obj.D = obj.Ji*(-Ahat_evaluated*D1_xi-Bhat_evaluated*D1_eta)-E_evaluated; + + end + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w',General boundary conditions'n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,L) + default_arg('type','char'); + switch type + case{'c','char'} + [closure,penalty] = boundary_condition_char(obj,boundary); + case{'general'} + [closure,penalty] = boundary_condition_general(obj,boundary,L); + otherwise + error('No such boundary condition') + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundaryGeneral boundary conditions) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.m; + end + + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y,x_,y_) + params = obj.params; + + if isa(mat,'function_handle') + [rows,cols] = size(mat(params,0,0,0,0)); + x_ = kr(obj.onesN,x_); + y_ = kr(obj.onesN,y_); + matVec = mat(params,X',Y',x_',y_'); + matVec = sparse(matVec); + side = max(length(X),length(Y)); + else + matVec = mat; + [rows,cols] = size(matVec); + side = max(length(X),length(Y)); + cols = cols/side; + end + + ret = cell(rows,cols); + for ii = 1:rows + for jj = 1:cols + ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); + end + end + ret = cell2mat(ret); + end + + %Characteristic boundary conditions + function [closure, penalty] = boundary_condition_char(obj,boundary) + params = obj.params; + X = obj.X; + Y = obj.Y; + xi = obj.xi; + eta = obj.eta; + + switch boundary + case {'w','W','west'} + e_ = obj.e_w; + mat = obj.Ahat; + boundPos = 'l'; + Hi = obj.Hxii; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); + side = max(length(eta)); + case {'e','E','east'} + e_ = obj.e_e; + mat = obj.Ahat; + boundPos = 'r'; + Hi = obj.Hxii; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); + side = max(length(eta)); + case {'s','S','south'} + e_ = obj.e_s; + mat = obj.Bhat; + boundPos = 'l'; + Hi = obj.Hetai; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); + side = max(length(xi)); + case {'n','N','north'} + e_ = obj.e_n; + mat = obj.Bhat; + boundPos = 'r'; + Hi = obj.Hetai; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); + side = max(length(xi)); + end + + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + + switch boundPos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + closure = Hi*e_*V*tau*Vi_plus*e_'; + penalty = -Hi*e_*V*tau*Vi_plus; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + closure = Hi*e_*V*tau*Vi_minus*e_'; + penalty = -Hi*e_*V*tau*Vi_minus; + end + end + + + % General boundary condition in the form Lu=g(x) + function [closure,penalty] = boundary_condition_general(obj,boundary,L) + params = obj.params; + X = obj.X; + Y = obj.Y; + xi = obj.xi; + eta = obj.eta; + + switch boundary + case {'w','W','west'} + e_ = obj.e_w; + mat = obj.Ahat; + boundPos = 'l'; + Hi = obj.Hxii; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_w),Y(obj.index_w),obj.X_eta(obj.index_w),obj.Y_eta(obj.index_w)); + + Ji_vec = diag(obj.Ji); + Ji = diag(Ji_vec(obj.index_w)); + xi_x = Ji*obj.Y_eta(obj.index_w); + xi_y = -Ji*obj.X_eta(obj.index_w); + L = obj.evaluateCoefficientMatrix(L,xi_x,xi_y,[],[]); + side = max(length(eta)); + case {'e','E','east'} + e_ = obj.e_e; + mat = obj.Ahat; + boundPos = 'r'; + Hi = obj.Hxii; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_e),Y(obj.index_e),obj.X_eta(obj.index_e),obj.Y_eta(obj.index_e)); + + Ji_vec = diag(obj.Ji); + Ji = diag(Ji_vec(obj.index_e)); + xi_x = Ji*obj.Y_eta(obj.index_e); + xi_y = -Ji*obj.X_eta(obj.index_e); + L = obj.evaluateCoefficientMatrix(L,-xi_x,-xi_y,[],[]); + side = max(length(eta)); + case {'s','S','south'} + e_ = obj.e_s; + mat = obj.Bhat; + boundPos = 'l'; + Hi = obj.Hetai; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_s),Y(obj.index_s),obj.X_xi(obj.index_s),obj.Y_xi(obj.index_s)); + + Ji_vec = diag(obj.Ji); + Ji = diag(Ji_vec(obj.index_s)); + eta_x = Ji*obj.Y_xi(obj.index_s); + eta_y = -Ji*obj.X_xi(obj.index_s); + L = obj.evaluateCoefficientMatrix(L,eta_x,eta_y,[],[]); + side = max(length(xi)); + case {'n','N','north'} + e_ = obj.e_n; + mat = obj.Bhat; + boundPos = 'r'; + Hi = obj.Hetai; + [V,Vi,D,signVec] = obj.matrixDiag(mat,X(obj.index_n),Y(obj.index_n),obj.X_xi(obj.index_n),obj.Y_xi(obj.index_n)); + + Ji_vec = diag(obj.Ji); + Ji = diag(Ji_vec(obj.index_n)); + eta_x = Ji*obj.Y_xi(obj.index_n); + eta_y = -Ji*obj.X_xi(obj.index_n); + L = obj.evaluateCoefficientMatrix(L,-eta_x,-eta_y,[],[]); + side = max(length(xi)); + end + + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + + switch boundPos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi(pos+1:obj.n*side,:); + V_plus = V(:,1:pos); + V_minus = V(:,(pos)+1:obj.n*side); + + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + R = -inv(L*V_plus)*(L*V_minus); + closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + R = -inv(L*V_minus)*(L*V_plus); + closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; + end + end + + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi + % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign + % [d+ ] + % D = [ d0 ] + % [ d-] + % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D + function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y,x_,y_) + params = obj.params; + syms xs ys + if(sum(abs(x_)) ~= 0) + syms xs_ + else + xs_ = 0; + end + + if(sum(abs(y_))~= 0) + syms ys_; + else + ys_ = 0; + end + + [V, D] = eig(mat(params,xs,ys,xs_,ys_)); + Vi = inv(V); + syms xs ys xs_ ys_ + + xs = x; + ys = y; + xs_ = x_; + ys_ = y_; + + side = max(length(x),length(y)); + Dret = zeros(obj.n,side*obj.n); + Vret = zeros(obj.n,side*obj.n); + Viret = zeros(obj.n,side*obj.n); + for ii = 1:obj.n + for jj = 1:obj.n + Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); + end + end + + D = sparse(Dret); + V = sparse(Vret); + Vi = sparse(Viret); + V = obj.evaluateCoefficientMatrix(V,x,y,x_,y_); + D = obj.evaluateCoefficientMatrix(D,x,y,x_,y_); + Vi = obj.evaluateCoefficientMatrix(Vi,x,y,x_,y_); + DD = diag(D); + + poseig = (DD>0); + zeroeig = (DD==0); + negeig = (DD<0); + + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; + signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; + end + end +end \ No newline at end of file