Mercurial > repos > public > sbplib
diff +scheme/LaplaceCurvilinear.m @ 704:111fcbcff2e9 feature/optim
merg with featuew grids
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 03 Nov 2017 10:53:15 +0100 |
parents | 33b962620e24 |
children | 07f8311374c6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/LaplaceCurvilinear.m Fri Nov 03 10:53:15 2017 +0100 @@ -0,0 +1,349 @@ +classdef LaplaceCurvilinear < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + + grid + + order % Order accuracy for the approximation + + a,b % Parameters of the operator + + + % Inner products and operators for physical coordinates + D % Laplace operator + H, Hi % Inner product + e_w, e_e, e_s, e_n + d_w, d_e, d_s, d_n % Normal derivatives at the boundary + H_w, H_e, H_s, H_n % Boundary inner products + Dx, Dy % Physical derivatives + M % Gradient inner product + + % Metric coefficients + J, Ji + a11, a12, a22 + x_u + x_v + y_u + y_v + + % Inner product and operators for logical coordinates + H_u, H_v % Norms in the x and y directions + Hi_u, Hi_v + Hu,Hv % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + Hiu, Hiv + du_w, dv_w + du_e, dv_e + du_s, dv_s + du_n, dv_n + gamm_u, gamm_v + lambda + end + + methods + % Implements a*div(b*grad(u)) as a SBP scheme + % TODO: Implement proper H, it should be the real physical quadrature, the logic quadrature may be but in a separate variable (H_logic?) + + function obj = LaplaceCurvilinear(g ,order, a, b, opSet) + default_arg('opSet',@sbp.D2Variable); + default_arg('a', 1); + default_arg('b', 1); + + if b ~=1 + error('Not implemented yet') + end + + assert(isa(g, 'grid.Curvilinear')) + + m = g.size(); + m_u = m(1); + m_v = m(2); + m_tot = g.N(); + + h = g.scaling(); + h_u = h(1); + h_v = h(2); + + + % 1D operators + ops_u = opSet(m_u, {0, 1}, order); + ops_v = opSet(m_v, {0, 1}, order); + + I_u = speye(m_u); + I_v = speye(m_v); + + D1_u = ops_u.D1; + D2_u = ops_u.D2; + H_u = ops_u.H; + Hi_u = ops_u.HI; + e_l_u = ops_u.e_l; + e_r_u = ops_u.e_r; + d1_l_u = ops_u.d1_l; + d1_r_u = ops_u.d1_r; + + D1_v = ops_v.D1; + D2_v = ops_v.D2; + H_v = ops_v.H; + Hi_v = ops_v.HI; + e_l_v = ops_v.e_l; + e_r_v = ops_v.e_r; + d1_l_v = ops_v.d1_l; + d1_r_v = ops_v.d1_r; + + + % Logical operators + Du = kr(D1_u,I_v); + Dv = kr(I_u,D1_v); + obj.Hu = kr(H_u,I_v); + obj.Hv = kr(I_u,H_v); + obj.Hiu = kr(Hi_u,I_v); + obj.Hiv = kr(I_u,Hi_v); + + e_w = kr(e_l_u,I_v); + e_e = kr(e_r_u,I_v); + e_s = kr(I_u,e_l_v); + e_n = kr(I_u,e_r_v); + obj.du_w = kr(d1_l_u,I_v); + obj.dv_w = (e_w'*Dv)'; + obj.du_e = kr(d1_r_u,I_v); + obj.dv_e = (e_e'*Dv)'; + obj.du_s = (e_s'*Du)'; + obj.dv_s = kr(I_u,d1_l_v); + obj.du_n = (e_n'*Du)'; + obj.dv_n = kr(I_u,d1_r_v); + + + % Metric coefficients + coords = g.points(); + x = coords(:,1); + y = coords(:,2); + + x_u = Du*x; + x_v = Dv*x; + y_u = Du*y; + y_v = Dv*y; + + J = x_u.*y_v - x_v.*y_u; + a11 = 1./J .* (x_v.^2 + y_v.^2); + a12 = -1./J .* (x_u.*x_v + y_u.*y_v); + a22 = 1./J .* (x_u.^2 + y_u.^2); + lambda = 1/2 * (a11 + a22 - sqrt((a11-a22).^2 + 4*a12.^2)); + + obj.x_u = x_u; + obj.x_v = x_v; + obj.y_u = y_u; + obj.y_v = y_v; + + + % Assemble full operators + L_12 = spdiag(a12); + Duv = Du*L_12*Dv; + Dvu = Dv*L_12*Du; + + Duu = sparse(m_tot); + Dvv = sparse(m_tot); + ind = grid.funcToMatrix(g, 1:m_tot); + + for i = 1:m_v + D = D2_u(a11(ind(:,i))); + p = ind(:,i); + Duu(p,p) = D; + end + + for i = 1:m_u + D = D2_v(a22(ind(i,:))); + p = ind(i,:); + Dvv(p,p) = D; + end + + + % Physical operators + obj.J = spdiag(J); + obj.Ji = spdiag(1./J); + + obj.D = obj.Ji*a*(Duu + Duv + Dvu + Dvv); + obj.H = obj.J*kr(H_u,H_v); + obj.Hi = obj.Ji*kr(Hi_u,Hi_v); + + obj.e_w = e_w; + obj.e_e = e_e; + obj.e_s = e_s; + obj.e_n = e_n; + + %% normal derivatives + I_w = ind(1,:); + I_e = ind(end,:); + I_s = ind(:,1); + I_n = ind(:,end); + + a11_w = spdiag(a11(I_w)); + a12_w = spdiag(a12(I_w)); + a11_e = spdiag(a11(I_e)); + a12_e = spdiag(a12(I_e)); + a22_s = spdiag(a22(I_s)); + a12_s = spdiag(a12(I_s)); + a22_n = spdiag(a22(I_n)); + a12_n = spdiag(a12(I_n)); + + s_w = sqrt((e_w'*x_v).^2 + (e_w'*y_v).^2); + s_e = sqrt((e_e'*x_v).^2 + (e_e'*y_v).^2); + s_s = sqrt((e_s'*x_u).^2 + (e_s'*y_u).^2); + s_n = sqrt((e_n'*x_u).^2 + (e_n'*y_u).^2); + + obj.d_w = -1*(spdiag(1./s_w)*(a11_w*obj.du_w' + a12_w*obj.dv_w'))'; + obj.d_e = (spdiag(1./s_e)*(a11_e*obj.du_e' + a12_e*obj.dv_e'))'; + obj.d_s = -1*(spdiag(1./s_s)*(a22_s*obj.dv_s' + a12_s*obj.du_s'))'; + obj.d_n = (spdiag(1./s_n)*(a22_n*obj.dv_n' + a12_n*obj.du_n'))'; + + obj.Dx = spdiag( y_v./J)*Du + spdiag(-y_u./J)*Dv; + obj.Dy = spdiag(-x_v./J)*Du + spdiag( x_u./J)*Dv; + + %% Boundary inner products + obj.H_w = H_v*spdiag(s_w); + obj.H_e = H_v*spdiag(s_e); + obj.H_s = H_u*spdiag(s_s); + obj.H_n = H_u*spdiag(s_n); + + % Misc. + obj.m = m; + obj.h = [h_u h_v]; + obj.order = order; + obj.grid = g; + + obj.a = a; + obj.b = b; + obj.a11 = a11; + obj.a12 = a12; + obj.a22 = a22; + obj.lambda = lambda; + + obj.gamm_u = h_u*ops_u.borrowing.M.d1; + obj.gamm_v = h_v*ops_v.borrowing.M.d1; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) + default_arg('type','neumann'); + default_arg('parameter', []); + + [e, d, gamm, H_b, ~] = obj.get_boundary_ops(boundary); + switch type + % Dirichlet boundary condition + case {'D','d','dirichlet'} + tuning = 1.2; + % tuning = 20.2; + + b1 = gamm*obj.lambda./obj.a11.^2; + b2 = gamm*obj.lambda./obj.a22.^2; + + tau1 = tuning * spdiag(-1./b1 - 1./b2); + tau2 = 1; + + tau = (tau1*e + tau2*d)*H_b; + + closure = obj.a*obj.Hi*tau*e'; + penalty = -obj.a*obj.Hi*tau; + + + % Neumann boundary condition + case {'N','n','neumann'} + tau1 = -1; + tau2 = 0; + tau = (tau1*e + tau2*d)*H_b; + + closure = obj.a*obj.Hi*tau*d'; + penalty = -obj.a*obj.Hi*tau; + + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + tuning = 1.2; + % tuning = 20.2; + [e_u, d_u, gamm_u, H_b_u, I_u] = obj.get_boundary_ops(boundary); + [e_v, d_v, gamm_v, H_b_v, I_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + u = obj; + v = neighbour_scheme; + + b1_u = gamm_u*u.lambda(I_u)./u.a11(I_u).^2; + b2_u = gamm_u*u.lambda(I_u)./u.a22(I_u).^2; + b1_v = gamm_v*v.lambda(I_v)./v.a11(I_v).^2; + b2_v = gamm_v*v.lambda(I_v)./v.a22(I_v).^2; + + tau1 = -1./(4*b1_u) -1./(4*b1_v) -1./(4*b2_u) -1./(4*b2_v); + tau1 = tuning * spdiag(tau1); + tau2 = 1/2; + + sig1 = -1/2; + sig2 = 0; + + tau = (e_u*tau1 + tau2*d_u)*H_b_u; + sig = (sig1*e_u + sig2*d_u)*H_b_u; + + closure = obj.a*obj.Hi*( tau*e_u' + sig*d_u'); + penalty = obj.a*obj.Hi*(-tau*e_v' + sig*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + % + % I -- the indecies of the boundary points in the grid matrix + function [e, d, gamm, H_b, I] = get_boundary_ops(obj, boundary) + + % gridMatrix = zeros(obj.m(2),obj.m(1)); + % gridMatrix(:) = 1:numel(gridMatrix); + + ind = grid.funcToMatrix(obj.grid, 1:prod(obj.m)); + + switch boundary + case 'w' + e = obj.e_w; + d = obj.d_w; + H_b = obj.H_w; + I = ind(1,:); + case 'e' + e = obj.e_e; + d = obj.d_e; + H_b = obj.H_e; + I = ind(end,:); + case 's' + e = obj.e_s; + d = obj.d_s; + H_b = obj.H_s; + I = ind(:,1)'; + case 'n' + e = obj.e_n; + d = obj.d_n; + H_b = obj.H_n; + I = ind(:,end)'; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch boundary + case {'w','e'} + gamm = obj.gamm_u; + case {'s','n'} + gamm = obj.gamm_v; + end + end + + function N = size(obj) + N = prod(obj.m); + end + end +end