Mercurial > repos > public > sbplib
diff +scheme/Utux2d.m @ 1033:037f203b9bf5 feature/burgers1d
Merge with branch feature/advectioRV to utilize the +rv package
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:44:12 +0100 |
parents | ac80bedc8df7 |
children | 8a9393084b30 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Utux2d.m Thu Jan 17 10:44:12 2019 +0100 @@ -0,0 +1,337 @@ +classdef Utux2d < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + grid % Grid + order % Order accuracy for the approximation + + a % Wave speed a = [a1, a2]; + % Can either be a constant vector or a cell array of function handles. + + H % Discrete norm + H_x, H_y % Norms in the x and y directions + Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms + + % Derivatives + Dx, Dy + + % Boundary operators + e_w, e_e, e_s, e_n + + D % Total discrete operator + end + + + methods + function obj = Utux2d(g ,order, opSet, a, fluxSplitting) + + default_arg('a',1/sqrt(2)*[1, 1]); + default_arg('opSet',@sbp.D2Standard); + default_arg('fluxSplitting',[]); + + assertType(g, 'grid.Cartesian'); + if iscell(a) + a1 = grid.evalOn(g, a{1}); + a2 = grid.evalOn(g, a{2}); + a = {spdiag(a1), spdiag(a2)}; + else + a = {a(1), a(2)}; + end + + m = g.size(); + m_x = m(1); + m_y = m(2); + m_tot = g.N(); + + xlim = {g.x{1}(1), g.x{1}(end)}; + ylim = {g.x{2}(1), g.x{2}(end)}; + obj.grid = g; + + % Operator sets + ops_x = opSet(m_x, xlim, order); + ops_y = opSet(m_y, ylim, order); + Ix = speye(m_x); + Iy = speye(m_y); + + % Norms + Hx = ops_x.H; + Hy = ops_y.H; + Hxi = ops_x.HI; + Hyi = ops_y.HI; + + obj.H_x = Hx; + obj.H_y = Hy; + obj.H = kron(Hx,Hy); + obj.Hi = kron(Hxi,Hyi); + obj.Hx = kron(Hx,Iy); + obj.Hy = kron(Ix,Hy); + obj.Hxi = kron(Hxi,Iy); + obj.Hyi = kron(Ix,Hyi); + + % Derivatives + if (isequal(opSet,@sbp.D1Upwind)) + Dx = (ops_x.Dp + ops_x.Dm)/2; + Dy = (ops_y.Dp + ops_y.Dm)/2; + obj.Dx = kron(Dx,Iy); + obj.Dy = kron(Ix,Dy); + DissOpx = (ops_x.Dm - ops_x.Dp)/2; + DissOpy = (ops_y.Dm - ops_y.Dp)/2; + DissOpx = kron(DissOpx,Iy); + DissOpy = kron(Ix,DissOpy); + + obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy + fluxSplitting{1}*DissOpx + fluxSplitting{2}*DissOpy); + else + Dx = ops_x.D1; + Dy = ops_y.D1; + obj.Dx = kron(Dx,Iy); + obj.Dy = kron(Ix,Dy); + + obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); + end + + % Boundary operators + obj.e_w = kr(ops_x.e_l, Iy); + obj.e_e = kr(ops_x.e_r, Iy); + obj.e_s = kr(Ix, ops_y.e_l); + obj.e_n = kr(Ix, ops_y.e_r); + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + obj.a = a; + end + % Closure functions return the opertors applied to the own domain to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. %TBD Remove type here? Only dirichlet applicable? + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type) + default_arg('type','dirichlet'); + sigma_left = -1; % Scalar penalty parameter for left boundaries (West/South) + sigma_right = 1; % Scalar penalty parameter for right boundaries (East/North) + switch boundary + % Can only specify boundary condition where there is inflow + % Extract the postivie resp. negative part of a, for the left + % resp. right boundaries, and set other values of a to zero. + % Then the closure will effectively only contribute to inflow boundaries + case {'w','W','west','West'} + a_inflow = obj.a{1}; + a_inflow(a_inflow < 0) = 0; + tau = sigma_left*a_inflow*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + case {'e','E','east','East'} + a_inflow = obj.a{1}; + a_inflow(a_inflow > 0) = 0; + tau = sigma_right*a_inflow*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + case {'s','S','south','South'} + a_inflow = obj.a{2}; + a_inflow(a_inflow < 0) = 0; + tau = sigma_left*a_inflow*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + case {'n','N','north','North'} + a_inflow = obj.a{2}; + a_inflow(a_inflow > 0) = 0; + tau = sigma_right*a_inflow*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + end + penalty = -obj.Hi*tau; + end + + % type Struct that specifies the interface coupling. + % Fields: + % -- couplingType String, type of interface coupling + % % Default: 'upwind'. Other: 'centered' + % -- interpolation: type of interpolation, default 'none' + % -- interpolationDamping: damping on upstream and downstream sides, when using interpolation. + % Default {0,0} gives zero damping. + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + defaultType.couplingType = 'upwind'; + defaultType.interpolation = 'none'; + defaultType.interpolationDamping = {0,0}; + default_struct('type', defaultType); + + switch type.interpolation + case {'none', ''} + [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); + case {'op','OP'} + [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); + otherwise + error('Unknown type of interpolation: %s ', type.interpolation); + end + end + + function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) + couplingType = type.couplingType; + + % Get neighbour boundary operator + switch neighbour_boundary + case {'e','E','east','East'} + e_neighbour = neighbour_scheme.e_e; + case {'w','W','west','West'} + e_neighbour = neighbour_scheme.e_w; + case {'n','N','north','North'} + e_neighbour = neighbour_scheme.e_n; + case {'s','S','south','South'} + e_neighbour = neighbour_scheme.e_s; + end + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*e_neighbour'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*e_neighbour'; + end + + end + + function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + % User can request special interpolation operators by specifying type.interpOpSet + default_field(type, 'interpOpSet', @sbp.InterpOpsOP); + + interpOpSet = type.interpOpSet; + couplingType = type.couplingType; + interpolationDamping = type.interpolationDamping; + + % Get neighbour boundary operator + switch neighbour_boundary + case {'e','E','east','East'} + e_neighbour = neighbour_scheme.e_e; + case {'w','W','west','West'} + e_neighbour = neighbour_scheme.e_w; + case {'n','N','north','North'} + e_neighbour = neighbour_scheme.e_n; + case {'s','S','south','South'} + e_neighbour = neighbour_scheme.e_s; + end + + switch couplingType + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' couplingType ' is not available.']) + end + + int_damp_us = interpolationDamping{1}; + int_damp_ds = interpolationDamping{2}; + + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + % Find the number of grid points along the interface + switch boundary + case {'w','e'} + m_u = obj.m(2); + case {'s','n'} + m_u = obj.m(1); + end + m_v = size(e_neighbour, 2); + + % Build interpolation operators + intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); + Iu2v = intOps.Iu2v; + Iv2u = intOps.Iv2u; + + I_local2neighbour_ds = intOps.Iu2v.bad; + I_local2neighbour_us = intOps.Iu2v.good; + I_neighbour2local_ds = intOps.Iv2u.good; + I_neighbour2local_us = intOps.Iv2u.bad; + + I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; + I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; + + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{1}... + *obj.e_w*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_w' - obj.Hi*beta*obj.e_w'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{1}... + *obj.e_e*obj.H_y; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_e' - obj.Hi*beta*obj.e_e'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{2}... + *obj.e_s*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_ds*obj.e_s' - obj.Hi*beta*obj.e_s'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{2}... + *obj.e_n*obj.H_x; + closure = closure + obj.Hi*beta*I_back_forth_us*obj.e_n' - obj.Hi*beta*obj.e_n'; + end + + + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file