Mercurial > repos > public > sbplib
diff +scheme/Schrodinger2d.m @ 1033:037f203b9bf5 feature/burgers1d
Merge with branch feature/advectioRV to utilize the +rv package
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Thu, 17 Jan 2019 10:44:12 +0100 |
parents | 3dd7f87c9a1b |
children | 78db023a7fe3 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Schrodinger2d.m Thu Jan 17 10:44:12 2019 +0100 @@ -0,0 +1,326 @@ +classdef Schrodinger2d < scheme.Scheme + +% Discretizes the Laplacian with constant coefficent, +% in the Schrödinger equation way (i.e., the discretization matrix is not necessarily +% definite) +% u_t = a*i*Laplace u +% opSet should be cell array of opSets, one per dimension. This +% is useful if we have periodic BC in one direction. + + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + + grid + dim + + order % Order of accuracy for the approximation + + % Diagonal matrix for variable coefficients + a % Constant coefficient + + D % Total operator + D1 % First derivatives + + % Second derivatives + D2 + + H, Hi % Inner products + e_l, e_r + d1_l, d1_r % Normal derivatives at the boundary + e_w, e_e, e_s, e_n + d_w, d_e, d_s, d_n + + H_boundary % Boundary inner products + + end + + methods + + function obj = Schrodinger2d(g ,order, a, opSet) + default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable}); + default_arg('a',1); + dim = 2; + + assertType(g, 'grid.Cartesian'); + if isa(a, 'function_handle') + a = grid.evalOn(g, a); + a = spdiag(a); + end + + m = g.size(); + m_tot = g.N(); + + h = g.scaling(); + xlim = {g.x{1}(1), g.x{1}(end)}; + ylim = {g.x{2}(1), g.x{2}(end)}; + lim = {xlim, ylim}; + + % 1D operators + ops = cell(dim,1); + for i = 1:dim + ops{i} = opSet{i}(m(i), lim{i}, order); + end + + I = cell(dim,1); + D1 = cell(dim,1); + D2 = cell(dim,1); + H = cell(dim,1); + Hi = cell(dim,1); + e_l = cell(dim,1); + e_r = cell(dim,1); + d1_l = cell(dim,1); + d1_r = cell(dim,1); + + for i = 1:dim + I{i} = speye(m(i)); + D1{i} = ops{i}.D1; + D2{i} = ops{i}.D2; + H{i} = ops{i}.H; + Hi{i} = ops{i}.HI; + e_l{i} = ops{i}.e_l; + e_r{i} = ops{i}.e_r; + d1_l{i} = ops{i}.d1_l; + d1_r{i} = ops{i}.d1_r; + end + + % Constant coeff D2 + for i = 1:dim + D2{i} = D2{i}(ones(m(i),1)); + end + + %====== Assemble full operators ======== + obj.D1 = cell(dim,1); + obj.D2 = cell(dim,1); + obj.e_l = cell(dim,1); + obj.e_r = cell(dim,1); + obj.d1_l = cell(dim,1); + obj.d1_r = cell(dim,1); + + % D1 + obj.D1{1} = kron(D1{1},I{2}); + obj.D1{2} = kron(I{1},D1{2}); + + % Boundary operators + obj.e_l{1} = kron(e_l{1},I{2}); + obj.e_l{2} = kron(I{1},e_l{2}); + obj.e_r{1} = kron(e_r{1},I{2}); + obj.e_r{2} = kron(I{1},e_r{2}); + + obj.d1_l{1} = kron(d1_l{1},I{2}); + obj.d1_l{2} = kron(I{1},d1_l{2}); + obj.d1_r{1} = kron(d1_r{1},I{2}); + obj.d1_r{2} = kron(I{1},d1_r{2}); + + % D2 + obj.D2{1} = kron(D2{1},I{2}); + obj.D2{2} = kron(I{1},D2{2}); + + % Quadratures + obj.H = kron(H{1},H{2}); + obj.Hi = inv(obj.H); + obj.H_boundary = cell(dim,1); + obj.H_boundary{1} = H{2}; + obj.H_boundary{2} = H{1}; + + % Differentiation matrix D (without SAT) + D2 = obj.D2; + D = sparse(m_tot,m_tot); + for j = 1:dim + D = D + a*1i*D2{j}; + end + obj.D = D; + %=========================================% + + % Misc. + obj.m = m; + obj.h = h; + obj.order = order; + obj.grid = g; + obj.dim = dim; + obj.a = a; + obj.e_w = obj.e_l{1}; + obj.e_e = obj.e_r{1}; + obj.e_s = obj.e_l{2}; + obj.e_n = obj.e_r{2}; + obj.d_w = obj.d1_l{1}; + obj.d_e = obj.d1_r{1}; + obj.d_s = obj.d1_l{2}; + obj.d_n = obj.d1_r{2}; + + end + + + % Closure functions return the operators applied to the own domain to close the boundary + % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) + default_arg('type','Neumann'); + default_arg('parameter', []); + + % j is the coordinate direction of the boundary + % nj: outward unit normal component. + % nj = -1 for west, south, bottom boundaries + % nj = 1 for east, north, top boundaries + [j, nj] = obj.get_boundary_number(boundary); + switch nj + case 1 + e = obj.e_r; + d = obj.d1_r; + case -1 + e = obj.e_l; + d = obj.d1_l; + end + + Hi = obj.Hi; + H_gamma = obj.H_boundary{j}; + a = e{j}'*obj.a*e{j}; + + switch type + + % Dirichlet boundary condition + case {'D','d','dirichlet','Dirichlet'} + closure = nj*Hi*d{j}*a*1i*H_gamma*(e{j}' ); + penalty = -nj*Hi*d{j}*a*1i*H_gamma; + + % Free boundary condition + case {'N','n','neumann','Neumann'} + closure = -nj*Hi*e{j}*a*1i*H_gamma*(d{j}' ); + penalty = nj*Hi*e{j}*a*1i*H_gamma; + + % Unknown boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + % type Struct that specifies the interface coupling. + % Fields: + % -- interpolation: type of interpolation, default 'none' + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + defaultType.interpolation = 'none'; + default_struct('type', defaultType); + + switch type.interpolation + case {'none', ''} + [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type); + case {'op','OP'} + [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type); + otherwise + error('Unknown type of interpolation: %s ', type.interpolation); + end + end + + function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + + % Get boundary operators + [e_neighbour, d_neighbour] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + [e, d, H_gamma] = obj.get_boundary_ops(boundary); + Hi = obj.Hi; + a = obj.a; + + % Get outward unit normal component + [~, n] = obj.get_boundary_number(boundary); + + Hi = obj.Hi; + sigma = -n*1i*a/2; + tau = -n*(1i*a)'/2; + + closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d'; + penalty = -tau*Hi*d*H_gamma*e_neighbour' ... + -sigma*Hi*e*H_gamma*d_neighbour'; + + end + + function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type) + + % User can request special interpolation operators by specifying type.interpOpSet + default_field(type, 'interpOpSet', @sbp.InterpOpsOP); + interpOpSet = type.interpOpSet; + + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_v, d_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + [e_u, d_u, H_gamma] = obj.get_boundary_ops(boundary); + Hi = obj.Hi; + a = obj.a; + + % Get outward unit normal component + [~, n] = obj.get_boundary_number(boundary); + + % Find the number of grid points along the interface + m_u = size(e_u, 2); + m_v = size(e_v, 2); + + % Build interpolation operators + intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order); + Iu2v = intOps.Iu2v; + Iv2u = intOps.Iv2u; + + sigma = -n*1i*a/2; + tau = -n*(1i*a)'/2; + + closure = tau*Hi*d_u*H_gamma*e_u' + sigma*Hi*e_u*H_gamma*d_u'; + penalty = -tau*Hi*d_u*H_gamma*Iv2u.good*e_v' ... + -sigma*Hi*e_u*H_gamma*Iv2u.bad*d_v'; + + end + + % Returns the coordinate number and outward normal component for the boundary specified by the string boundary. + function [j, nj] = get_boundary_number(obj, boundary) + + switch boundary + case {'w','W','west','West', 'e', 'E', 'east', 'East'} + j = 1; + case {'s','S','south','South', 'n', 'N', 'north', 'North'} + j = 2; + otherwise + error('No such boundary: boundary = %s',boundary); + end + + switch boundary + case {'w','W','west','West','s','S','south','South'} + nj = -1; + case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'} + nj = 1; + end + end + + % Returns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e, d, H_b] = get_boundary_ops(obj, boundary) + + switch boundary + case 'w' + e = obj.e_w; + d = obj.d_w; + H_b = obj.H_boundary{1}; + case 'e' + e = obj.e_e; + d = obj.d_e; + H_b = obj.H_boundary{1}; + case 's' + e = obj.e_s; + d = obj.d_s; + H_b = obj.H_boundary{2}; + case 'n' + e = obj.e_n; + d = obj.d_n; + H_b = obj.H_boundary{2}; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = prod(obj.m); + end + end +end