diff +scheme/Schrodinger2d.m @ 1033:037f203b9bf5 feature/burgers1d

Merge with branch feature/advectioRV to utilize the +rv package
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:44:12 +0100
parents 3dd7f87c9a1b
children 78db023a7fe3
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Schrodinger2d.m	Thu Jan 17 10:44:12 2019 +0100
@@ -0,0 +1,326 @@
+classdef Schrodinger2d < scheme.Scheme
+
+% Discretizes the Laplacian with constant coefficent,
+% in the Schrödinger equation way (i.e., the discretization matrix is not necessarily
+% definite)
+% u_t = a*i*Laplace u
+% opSet should be cell array of opSets, one per dimension. This
+% is useful if we have periodic BC in one direction.
+
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+
+        grid
+        dim
+
+        order % Order of accuracy for the approximation
+
+        % Diagonal matrix for variable coefficients
+        a % Constant coefficient
+
+        D % Total operator
+        D1 % First derivatives
+
+        % Second derivatives
+        D2
+
+        H, Hi % Inner products
+        e_l, e_r
+        d1_l, d1_r % Normal derivatives at the boundary
+        e_w, e_e, e_s, e_n
+        d_w, d_e, d_s, d_n
+
+        H_boundary % Boundary inner products
+
+    end
+
+    methods
+
+        function obj = Schrodinger2d(g ,order, a, opSet)
+            default_arg('opSet',{@sbp.D2Variable, @sbp.D2Variable});
+            default_arg('a',1);
+            dim = 2;
+
+            assertType(g, 'grid.Cartesian');
+            if isa(a, 'function_handle')
+                a = grid.evalOn(g, a);
+                a = spdiag(a);
+            end
+
+            m = g.size();
+            m_tot = g.N();
+
+            h = g.scaling();
+            xlim = {g.x{1}(1), g.x{1}(end)};
+            ylim = {g.x{2}(1), g.x{2}(end)};
+            lim = {xlim, ylim};
+
+            % 1D operators
+            ops = cell(dim,1);
+            for i = 1:dim
+                ops{i} = opSet{i}(m(i), lim{i}, order);
+            end
+
+            I = cell(dim,1);
+            D1 = cell(dim,1);
+            D2 = cell(dim,1);
+            H = cell(dim,1);
+            Hi = cell(dim,1);
+            e_l = cell(dim,1);
+            e_r = cell(dim,1);
+            d1_l = cell(dim,1);
+            d1_r = cell(dim,1);
+
+            for i = 1:dim
+                I{i} = speye(m(i));
+                D1{i} = ops{i}.D1;
+                D2{i} = ops{i}.D2;
+                H{i} =  ops{i}.H;
+                Hi{i} = ops{i}.HI;
+                e_l{i} = ops{i}.e_l;
+                e_r{i} = ops{i}.e_r;
+                d1_l{i} = ops{i}.d1_l;
+                d1_r{i} = ops{i}.d1_r;
+            end
+
+            % Constant coeff D2
+            for i = 1:dim
+                D2{i} = D2{i}(ones(m(i),1));
+            end
+
+            %====== Assemble full operators ========
+            obj.D1 = cell(dim,1);
+            obj.D2 = cell(dim,1);
+            obj.e_l = cell(dim,1);
+            obj.e_r = cell(dim,1);
+            obj.d1_l = cell(dim,1);
+            obj.d1_r = cell(dim,1);
+
+            % D1
+            obj.D1{1} = kron(D1{1},I{2});
+            obj.D1{2} = kron(I{1},D1{2});
+
+            % Boundary operators
+            obj.e_l{1} = kron(e_l{1},I{2});
+            obj.e_l{2} = kron(I{1},e_l{2});
+            obj.e_r{1} = kron(e_r{1},I{2});
+            obj.e_r{2} = kron(I{1},e_r{2});
+
+            obj.d1_l{1} = kron(d1_l{1},I{2});
+            obj.d1_l{2} = kron(I{1},d1_l{2});
+            obj.d1_r{1} = kron(d1_r{1},I{2});
+            obj.d1_r{2} = kron(I{1},d1_r{2});
+
+            % D2
+            obj.D2{1} = kron(D2{1},I{2});
+            obj.D2{2} = kron(I{1},D2{2});
+
+            % Quadratures
+            obj.H = kron(H{1},H{2});
+            obj.Hi = inv(obj.H);
+            obj.H_boundary = cell(dim,1);
+            obj.H_boundary{1} = H{2};
+            obj.H_boundary{2} = H{1};
+
+            % Differentiation matrix D (without SAT)
+            D2 = obj.D2;
+            D = sparse(m_tot,m_tot);
+            for j = 1:dim
+                D = D + a*1i*D2{j};
+            end
+            obj.D = D;
+            %=========================================%
+
+            % Misc.
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+            obj.grid = g;
+            obj.dim = dim;
+            obj.a = a;
+            obj.e_w = obj.e_l{1};
+            obj.e_e = obj.e_r{1};
+            obj.e_s = obj.e_l{2};
+            obj.e_n = obj.e_r{2};
+            obj.d_w = obj.d1_l{1};
+            obj.d_e = obj.d1_r{1};
+            obj.d_s = obj.d1_l{2};
+            obj.d_n = obj.d1_r{2};
+
+        end
+
+
+        % Closure functions return the operators applied to the own domain to close the boundary
+        % Penalty functions return the operators to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj, boundary, type, parameter)
+            default_arg('type','Neumann');
+            default_arg('parameter', []);
+
+            % j is the coordinate direction of the boundary
+            % nj: outward unit normal component.
+            % nj = -1 for west, south, bottom boundaries
+            % nj = 1  for east, north, top boundaries
+            [j, nj] = obj.get_boundary_number(boundary);
+            switch nj
+            case 1
+                e = obj.e_r;
+                d = obj.d1_r;
+            case -1
+                e = obj.e_l;
+                d = obj.d1_l;
+            end
+
+            Hi = obj.Hi;
+            H_gamma = obj.H_boundary{j};
+            a = e{j}'*obj.a*e{j};
+
+            switch type
+
+            % Dirichlet boundary condition
+            case {'D','d','dirichlet','Dirichlet'}
+                    closure =  nj*Hi*d{j}*a*1i*H_gamma*(e{j}' );
+                    penalty = -nj*Hi*d{j}*a*1i*H_gamma;
+
+            % Free boundary condition
+            case {'N','n','neumann','Neumann'}
+                    closure = -nj*Hi*e{j}*a*1i*H_gamma*(d{j}' );
+                    penalty =  nj*Hi*e{j}*a*1i*H_gamma;
+
+            % Unknown boundary condition
+            otherwise
+                error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        % type     Struct that specifies the interface coupling.
+        %          Fields:
+        %          -- interpolation:    type of interpolation, default 'none'
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            defaultType.interpolation = 'none';
+            default_struct('type', defaultType);
+
+            switch type.interpolation
+            case {'none', ''}
+                [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            case {'op','OP'}
+                [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type);
+            otherwise
+                error('Unknown type of interpolation: %s ', type.interpolation);
+            end
+        end
+
+        function [closure, penalty] = interfaceStandard(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+
+            % Get boundary operators
+            [e_neighbour, d_neighbour] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+            [e, d, H_gamma] = obj.get_boundary_ops(boundary);
+            Hi = obj.Hi;
+            a = obj.a;
+
+            % Get outward unit normal component
+            [~, n] = obj.get_boundary_number(boundary);
+
+            Hi = obj.Hi;
+            sigma = -n*1i*a/2;
+            tau = -n*(1i*a)'/2;
+
+            closure = tau*Hi*d*H_gamma*e' + sigma*Hi*e*H_gamma*d';
+            penalty = -tau*Hi*d*H_gamma*e_neighbour' ...
+                      -sigma*Hi*e*H_gamma*d_neighbour';
+
+        end
+
+        function [closure, penalty] = interfaceNonConforming(obj,boundary,neighbour_scheme,neighbour_boundary,type)
+
+            % User can request special interpolation operators by specifying type.interpOpSet
+            default_field(type, 'interpOpSet', @sbp.InterpOpsOP);
+            interpOpSet = type.interpOpSet;
+
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            [e_v, d_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+            [e_u, d_u, H_gamma] = obj.get_boundary_ops(boundary);
+            Hi = obj.Hi;
+            a = obj.a;
+
+            % Get outward unit normal component
+            [~, n] = obj.get_boundary_number(boundary);
+
+            % Find the number of grid points along the interface
+            m_u = size(e_u, 2);
+            m_v = size(e_v, 2);
+
+            % Build interpolation operators
+            intOps = interpOpSet(m_u, m_v, obj.order, neighbour_scheme.order);
+            Iu2v = intOps.Iu2v;
+            Iv2u = intOps.Iv2u;
+
+            sigma = -n*1i*a/2;
+            tau = -n*(1i*a)'/2;
+
+            closure = tau*Hi*d_u*H_gamma*e_u' + sigma*Hi*e_u*H_gamma*d_u';
+            penalty = -tau*Hi*d_u*H_gamma*Iv2u.good*e_v' ...
+                      -sigma*Hi*e_u*H_gamma*Iv2u.bad*d_v';
+
+        end
+
+        % Returns the coordinate number and outward normal component for the boundary specified by the string boundary.
+        function [j, nj] = get_boundary_number(obj, boundary)
+
+            switch boundary
+                case {'w','W','west','West', 'e', 'E', 'east', 'East'}
+                    j = 1;
+                case {'s','S','south','South', 'n', 'N', 'north', 'North'}
+                    j = 2;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+
+            switch boundary
+                case {'w','W','west','West','s','S','south','South'}
+                    nj = -1;
+                case {'e', 'E', 'east', 'East','n', 'N', 'north', 'North'}
+                    nj = 1;
+            end
+        end
+
+        % Returns the boundary ops and sign for the boundary specified by the string boundary.
+        % The right boundary is considered the positive boundary
+        function [e, d, H_b] = get_boundary_ops(obj, boundary)
+
+            switch boundary
+                case 'w'
+                    e = obj.e_w;
+                    d = obj.d_w;
+                    H_b = obj.H_boundary{1};
+                case 'e'
+                    e = obj.e_e;
+                    d = obj.d_e;
+                    H_b = obj.H_boundary{1};
+                case 's'
+                    e = obj.e_s;
+                    d = obj.d_s;
+                    H_b = obj.H_boundary{2};
+                case 'n'
+                    e = obj.e_n;
+                    d = obj.d_n;
+                    H_b = obj.H_boundary{2};
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function N = size(obj)
+            N = prod(obj.m);
+        end
+    end
+end