Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_variable_2.m @ 310:ffa5d557942b feature/beams
Moved operator implementations and fixed some naming.
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Fri, 23 Sep 2016 14:55:08 +0200 |
| parents | +sbp/+implementations/d4_compatible_halfvariable_2.m@f7ac3cd6eeaa |
| children | 713b125038a3 |
comparison
equal
deleted
inserted
replaced
| 309:8fafe97bf27b | 310:ffa5d557942b |
|---|---|
| 1 % Returns D2 as a function handle | |
| 2 function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1,... | |
| 3 S2_m, S3_1, S3_m, S_1, S_m] = d4_compatible_halfvariable_2(m,h) | |
| 4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 5 %%% 4:de ordn. SBP Finita differens %%% | |
| 6 %%% operatorer framtagna av Ken Mattsson %%% | |
| 7 %%% %%% | |
| 8 %%% 6 randpunkter, diagonal norm %%% | |
| 9 %%% %%% | |
| 10 %%% Datum: 2013-11-11 %%% | |
| 11 %%% %%% | |
| 12 %%% %%% | |
| 13 %%% H (Normen) %%% | |
| 14 %%% D1 (approx f?rsta derivatan) %%% | |
| 15 %%% D2 (approx andra derivatan) %%% | |
| 16 %%% D3 (approx tredje derivatan) %%% | |
| 17 %%% D2 (approx fj?rde derivatan) %%% | |
| 18 %%% %%% | |
| 19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 20 | |
| 21 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
| 22 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
| 23 % vi har 3de och 4de derivator i v?r PDE | |
| 24 % I annat fall anv?nd de "traditionella" som har noggrannare | |
| 25 % randsplutningar f?r D1 och D2 | |
| 26 | |
| 27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
| 28 % vilket ?r n?dv?ndigt f?r stabilitet | |
| 29 | |
| 30 BP = 4; | |
| 31 if(m<2*BP) | |
| 32 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
| 33 end | |
| 34 | |
| 35 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; | |
| 36 | |
| 37 | |
| 38 H=H*h; | |
| 39 HI=inv(H); | |
| 40 | |
| 41 | |
| 42 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
| 43 | |
| 44 q1=1/2; | |
| 45 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
| 46 stencil = [-q1,0,q1]; | |
| 47 d = (length(stencil)-1)/2; | |
| 48 diags = -d:d; | |
| 49 Q = stripeMatrix(stencil, diags, m); | |
| 50 | |
| 51 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
| 52 | |
| 53 | |
| 54 e_1=sparse(m,1);e_1(1)=1; | |
| 55 e_m=sparse(m,1);e_m(m)=1; | |
| 56 | |
| 57 | |
| 58 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; | |
| 59 | |
| 60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 61 | |
| 62 | |
| 63 | |
| 64 % Second derivative, 1st order accurate at first boundary points | |
| 65 | |
| 66 % below for constant coefficients | |
| 67 % m1=-1;m0=2; | |
| 68 % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
| 69 % M=M/h; | |
| 70 %D2=HI*(-M-e_1*S_1+e_m*S_m); | |
| 71 | |
| 72 % Below for variable coefficients | |
| 73 % Require a vector c with the koeffients | |
| 74 | |
| 75 S_U=[-3/2 2 -1/2]/h; | |
| 76 S_1=sparse(1,m); | |
| 77 S_1(1:3)=S_U; | |
| 78 S_m=sparse(1,m); | |
| 79 S_m(m-2:m)=fliplr(-S_U); | |
| 80 | |
| 81 S_1 = S_1'; | |
| 82 S_m = S_m'; | |
| 83 | |
| 84 M=sparse(m,m); | |
| 85 e_1 = sparse(e_1); | |
| 86 e_m = sparse(e_m); | |
| 87 S_1 = sparse(S_1); | |
| 88 S_m = sparse(S_m); | |
| 89 | |
| 90 scheme_width = 3; | |
| 91 scheme_radius = (scheme_width-1)/2; | |
| 92 r = (1+scheme_radius):(m-scheme_radius); | |
| 93 | |
| 94 function D2 = D2_fun(c) | |
| 95 | |
| 96 Mm1 = -c(r-1)/2 - c(r)/2; | |
| 97 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | |
| 98 Mp1 = -c(r)/2 - c(r+1)/2; | |
| 99 | |
| 100 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | |
| 101 | |
| 102 | |
| 103 M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
| 104 M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
| 105 M=M/h; | |
| 106 | |
| 107 D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); | |
| 108 end | |
| 109 D2 = @D2_fun; | |
| 110 | |
| 111 | |
| 112 | |
| 113 | |
| 114 | |
| 115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 116 | |
| 117 | |
| 118 | |
| 119 % Third derivative, 1st order accurate at first 6 boundary points | |
| 120 | |
| 121 q2=1/2;q1=-1; | |
| 122 % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
| 123 stencil = [-q2,-q1,0,q1,q2]; | |
| 124 d = (length(stencil)-1)/2; | |
| 125 diags = -d:d; | |
| 126 Q3 = stripeMatrix(stencil, diags, m); | |
| 127 | |
| 128 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
| 129 | |
| 130 | |
| 131 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | |
| 132 Q3(1:4,1:4)=Q3_U; | |
| 133 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); | |
| 134 Q3=Q3/h^2; | |
| 135 | |
| 136 | |
| 137 | |
| 138 S2_U=[1 -2 1;]/h^2; | |
| 139 S2_1=sparse(1,m); | |
| 140 S2_1(1:3)=S2_U; | |
| 141 S2_m=sparse(1,m); | |
| 142 S2_m(m-2:m)=fliplr(S2_U); | |
| 143 S2_1 = S2_1'; | |
| 144 S2_m = S2_m'; | |
| 145 | |
| 146 | |
| 147 | |
| 148 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; | |
| 149 | |
| 150 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
| 151 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
| 152 | |
| 153 m2=1;m1=-4;m0=6; | |
| 154 % M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
| 155 stencil = [m2,m1,m0,m1,m2]; | |
| 156 d = (length(stencil)-1)/2; | |
| 157 diags = -d:d; | |
| 158 M4 = stripeMatrix(stencil, diags, m); | |
| 159 | |
| 160 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
| 161 | |
| 162 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | |
| 163 | |
| 164 | |
| 165 M4(1:4,1:4)=M4_U; | |
| 166 | |
| 167 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); | |
| 168 M4=M4/h^3; | |
| 169 | |
| 170 S3_U=[-1 3 -3 1;]/h^3; | |
| 171 S3_1=sparse(1,m); | |
| 172 S3_1(1:4)=S3_U; | |
| 173 S3_m=sparse(1,m); | |
| 174 S3_m(m-3:m)=fliplr(-S3_U); | |
| 175 S3_1 = S3_1'; | |
| 176 S3_m = S3_m'; | |
| 177 | |
| 178 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | |
| 179 end |
