Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_variable_2.m @ 310:ffa5d557942b feature/beams
Moved operator implementations and fixed some naming.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 14:55:08 +0200 |
parents | +sbp/+implementations/d4_compatible_halfvariable_2.m@f7ac3cd6eeaa |
children | 713b125038a3 |
comparison
equal
deleted
inserted
replaced
309:8fafe97bf27b | 310:ffa5d557942b |
---|---|
1 % Returns D2 as a function handle | |
2 function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1,... | |
3 S2_m, S3_1, S3_m, S_1, S_m] = d4_compatible_halfvariable_2(m,h) | |
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
5 %%% 4:de ordn. SBP Finita differens %%% | |
6 %%% operatorer framtagna av Ken Mattsson %%% | |
7 %%% %%% | |
8 %%% 6 randpunkter, diagonal norm %%% | |
9 %%% %%% | |
10 %%% Datum: 2013-11-11 %%% | |
11 %%% %%% | |
12 %%% %%% | |
13 %%% H (Normen) %%% | |
14 %%% D1 (approx f?rsta derivatan) %%% | |
15 %%% D2 (approx andra derivatan) %%% | |
16 %%% D3 (approx tredje derivatan) %%% | |
17 %%% D2 (approx fj?rde derivatan) %%% | |
18 %%% %%% | |
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
20 | |
21 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
22 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
23 % vi har 3de och 4de derivator i v?r PDE | |
24 % I annat fall anv?nd de "traditionella" som har noggrannare | |
25 % randsplutningar f?r D1 och D2 | |
26 | |
27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
28 % vilket ?r n?dv?ndigt f?r stabilitet | |
29 | |
30 BP = 4; | |
31 if(m<2*BP) | |
32 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
33 end | |
34 | |
35 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; | |
36 | |
37 | |
38 H=H*h; | |
39 HI=inv(H); | |
40 | |
41 | |
42 % First derivative SBP operator, 1st order accurate at first 6 boundary points | |
43 | |
44 q1=1/2; | |
45 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
46 stencil = [-q1,0,q1]; | |
47 d = (length(stencil)-1)/2; | |
48 diags = -d:d; | |
49 Q = stripeMatrix(stencil, diags, m); | |
50 | |
51 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | |
52 | |
53 | |
54 e_1=sparse(m,1);e_1(1)=1; | |
55 e_m=sparse(m,1);e_m(m)=1; | |
56 | |
57 | |
58 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; | |
59 | |
60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
61 | |
62 | |
63 | |
64 % Second derivative, 1st order accurate at first boundary points | |
65 | |
66 % below for constant coefficients | |
67 % m1=-1;m0=2; | |
68 % M=m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0);M(1,1)=1;M(m,m)=1; | |
69 % M=M/h; | |
70 %D2=HI*(-M-e_1*S_1+e_m*S_m); | |
71 | |
72 % Below for variable coefficients | |
73 % Require a vector c with the koeffients | |
74 | |
75 S_U=[-3/2 2 -1/2]/h; | |
76 S_1=sparse(1,m); | |
77 S_1(1:3)=S_U; | |
78 S_m=sparse(1,m); | |
79 S_m(m-2:m)=fliplr(-S_U); | |
80 | |
81 S_1 = S_1'; | |
82 S_m = S_m'; | |
83 | |
84 M=sparse(m,m); | |
85 e_1 = sparse(e_1); | |
86 e_m = sparse(e_m); | |
87 S_1 = sparse(S_1); | |
88 S_m = sparse(S_m); | |
89 | |
90 scheme_width = 3; | |
91 scheme_radius = (scheme_width-1)/2; | |
92 r = (1+scheme_radius):(m-scheme_radius); | |
93 | |
94 function D2 = D2_fun(c) | |
95 | |
96 Mm1 = -c(r-1)/2 - c(r)/2; | |
97 M0 = c(r-1)/2 + c(r) + c(r+1)/2; | |
98 Mp1 = -c(r)/2 - c(r+1)/2; | |
99 | |
100 M(r,:) = spdiags([Mm1 M0 Mp1],0:2*scheme_radius,length(r),m); | |
101 | |
102 | |
103 M(1:2,1:2)=[c(1)/2 + c(2)/2 -c(1)/2 - c(2)/2; -c(1)/2 - c(2)/2 c(1)/2 + c(2) + c(3)/2;]; | |
104 M(m-1:m,m-1:m)=[c(m-2)/2 + c(m-1) + c(m)/2 -c(m-1)/2 - c(m)/2; -c(m-1)/2 - c(m)/2 c(m-1)/2 + c(m)/2;]; | |
105 M=M/h; | |
106 | |
107 D2=HI*(-M-c(1)*e_1*S_1'+c(m)*e_m*S_m'); | |
108 end | |
109 D2 = @D2_fun; | |
110 | |
111 | |
112 | |
113 | |
114 | |
115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
116 | |
117 | |
118 | |
119 % Third derivative, 1st order accurate at first 6 boundary points | |
120 | |
121 q2=1/2;q1=-1; | |
122 % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | |
123 stencil = [-q2,-q1,0,q1,q2]; | |
124 d = (length(stencil)-1)/2; | |
125 diags = -d:d; | |
126 Q3 = stripeMatrix(stencil, diags, m); | |
127 | |
128 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | |
129 | |
130 | |
131 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | |
132 Q3(1:4,1:4)=Q3_U; | |
133 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); | |
134 Q3=Q3/h^2; | |
135 | |
136 | |
137 | |
138 S2_U=[1 -2 1;]/h^2; | |
139 S2_1=sparse(1,m); | |
140 S2_1(1:3)=S2_U; | |
141 S2_m=sparse(1,m); | |
142 S2_m(m-2:m)=fliplr(S2_U); | |
143 S2_1 = S2_1'; | |
144 S2_m = S2_m'; | |
145 | |
146 | |
147 | |
148 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; | |
149 | |
150 % Fourth derivative, 0th order accurate at first 6 boundary points (still | |
151 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | |
152 | |
153 m2=1;m1=-4;m0=6; | |
154 % M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | |
155 stencil = [m2,m1,m0,m1,m2]; | |
156 d = (length(stencil)-1)/2; | |
157 diags = -d:d; | |
158 M4 = stripeMatrix(stencil, diags, m); | |
159 | |
160 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | |
161 | |
162 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | |
163 | |
164 | |
165 M4(1:4,1:4)=M4_U; | |
166 | |
167 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); | |
168 M4=M4/h^3; | |
169 | |
170 S3_U=[-1 3 -3 1;]/h^3; | |
171 S3_1=sparse(1,m); | |
172 S3_1(1:4)=S3_U; | |
173 S3_m=sparse(1,m); | |
174 S3_m(m-3:m)=fliplr(-S3_U); | |
175 S3_1 = S3_1'; | |
176 S3_m = S3_m'; | |
177 | |
178 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | |
179 end |